
Architecture and Implementation of Micro-ROS with OpenAMP on an
Heterogeneous Multi-core Processor

Vincent Conus Shinya Honda Shinkichi Inagaki

Dpt. of Mechanical Engineering Dpt. of Mechanical Engineering Dpt. of Mechanical Engineering
and System Control and System Control and System Control

Nanzan University, Nagoya, JP Nanzan University, Nagoya, JP Nanzan University, Nagoya, JP
vincent.conus@pm.me shonda@nanzan-u.ac.jp inag@nanzan-u.ac.jp

Abstract— Integration of a variety of systems on a

chip has become possible in recent years, making het-

erogeneous multi-core processors (HMP) available as

development targets. In this article, the implemen-

tation and deployment of the Robot Operating Sys-

tem (ROS) and micro-ROS on an HMP is presented,

as these are very popular choices as middleware in

robotics, automotive and beyond. We are focusing on

the architecture of the system and the use of Ope-

nAMP shared-memory system as a mean of commu-

nication as well as on the early result in data transfer

speed improvement compared to communication using

a serial bus.

I. Introduction

The integration of components and functions for em-
bedded system brings notable advantages in performance
and energy consumption[1]. As Heterogeneous Multi-core
Processors (HMP) devices are becoming available, both
a general purpose application processing unit (APU) and
a real-time capable micro-controller unit (MCU) can be
used on a single System on Chip (SoC). The gain in per-
formance and reduced parts number comes with an in-
creased cost in complexity for the firmware deployment
as the MCU is no longer a separated device, but rather
a component that needs to be setup and accessed from
within the main chip.
In the context of robotics development, running the

Robot Operating System (ROS) on the APU of an HMP
is possible. ROS and its sequel ROS2 are popular mid-
dleware, its network system being particularly powerful,
allowing for robust discovery and data transmission from
a Linux system.
Micro-ROS, on the other hand, is an implementation of

the ROS2 communication mechanisms that is meant to be
deployed on a MCU. This new firmware makes real-time
devices able to join the ROS network using system such
as UART, Ethernet or CAN to communicate. Micro-ROS
needs a node called ”Agent” in the ROS2 side in order to
communicate with it.
Running micro-ROS on an HMP is the natural next

step in the described context. As ROS2 is capable of
running on any APU, it would make sense to run micro-
ROS on an MCU on the very same chip. The challenge,
however, is the data transport: we need to find a channel
through which ROS2 and micro-ROS can communicate.
Propositions exist but they all have trades-off. Virtual
Ethernet requires TCP/IP which has a large overhead, in
particular for the MCU.

UART requires external controllers, a cable and will
cancel out the speed advantage of using intra-chip com-
munication. For this publication we focused on us-
ing the Open Asymmetric Multi-Processing (OpenAMP)
framework, communicating through shared-memory, po-
tentially at the expense of flexibility but with the promise
of great data throughput.

Compared to the other systems, OpenAMP is inte-
grated in the board operating system, making it po-
tentially portable to many HMPs. The communication
passes through the shared memory with a system called
Remote Processor Messaging (RPMsg). Using Remote
Processor Framework (remoteproc) [2], the MCU can be
accessed as a device from the host Linux.

OpenAMP used as a channel between ROS2 and micro-
ROS has been tried in another project [3] but only on a
custom architecture. With very little details on the exact
implementation as well as no information at all regarding
the performances of their system, it was difficult to get
anything useful for our own project from this implemen-
tation.

In this project, a way for ROS2 and micro-ROS to be
deployed together on an HMP is proposed. While run-
ning on the same silicon chip, the goal is to make it pos-
sible to exchange data over OpenAMP’s RPMsg system.
The architecture presented here should be the first of its
kind to be deployed on a commercially available platform
(Xilinx KRIA boards), with a fully described architec-
ture as well as some communication speed testing. In the
implementation detailed here, a basic, proof-of-concept
communication was archive, showing the feasibility of the
imagined architecture, acknowledging the general require-
ments and giving the first real-life data regarding transfer
performances.

Most critically, this projects main contributions are:

- An architecture proposition for running micro-
ROS on an HMP with OpenAMP as the transport
layer.

- The distribution of a deployable template that can
be utilize to run ROS2 and a micro-ROS instance as
a pair on an HMP.

Implemented in robotics, this system allows to have
a more direct access to the peripheral devices without
scarifying the real time capability of a true Real Time
Operating System (RTOS).

SASIMI 2024 ProceedingsR1-5

- 26 -



Fig. 1. General architecture for a ROS2 and micro-ROS system.

II. Background

A. ROS2, DDS & micro-ROS

The robot operating system (ROS or ROS2) is a com-
monly used middleware in the world of robotics. It allows
for a convenient access to development tools, libraries,
simulation utilities and API as well as to a topic-based
communication protocol between the components of the
ROS system (nodes). This Data Distribution Service
(DDS) protocol[4] is a central piece for our proposed de-
ployment of this paper, in particular regarding its great
discoverability and communication reliability with nodes.

While ROS and ROS2 systems are typically deploy-
able only on top of a general purpose operating sys-
tem (Linux), the recent micro-ROS project gives ROS2
communication capabilities for micro controllers, allowing
real-time capable devices to utilize the messaging system
and be part of a ROS2 environment.

Fig. 1 shows an architecture for a typical deployment of
a ROS2 and a micro-ROS system. In this configuration,
the computationally heavy control and vision tasks can
be deployed on ROS2 on the Linux side (APU). The real-
time sensitive applications can be run on top of a RTOS
on the micro-ROS side (MCU).

On the left of the figure, the ROS2 stack can be seen,
with a node called the ”Agent”. It’s purpose is to make
the communication with the micro-ROS system possible.
The agent makes the micro-ROS entity a part of the global
DDS network.

On the right, we have the micro-ROS system running
on top of RTOS on a separated device. Real-time sys-
tems can be deployed here as RTOS tasks are running in
pseudo-parallel with the micro-ROS system.

These tasks are now able to communicate with the ROS
world with an API. Both devices communicate using typ-
ically UART or other serial processes, CAN or Ethernet.

B. HMP

An HMP, as viewed in example schematic at Fig. 2, has
the particular property of having multiple cores of differ-
ent types, architecture and capabilities within the same
chip. This is by opposition to the ”traditional” CPUs,
with a single type of core.

This gives more options to the developers to use the
best suited cores for their applications (APU, MCU, DSP
or even FPGA), as well as making the communication
between the components potentially much faster.

This type of SoC are becoming increasingly popular,
with a wider range of manufacturer producing them for
industrial application, such as i.MX, R-CAR or ZynqMP.

Fig. 2. Xilinx’s ZynqMP HMP architecture used in this project.

C. OpenAMP & RPMsg

OpenAMP is an open-source framework meant to sim-
plify the communication for components in an HMP.
It is integrated into the Linux kernel since at least the

version 4.11. This makes OpenAMP available for every
HMP boards running Linux, and an ideal choice for an
intra-chip communication framework.
Using this frameworks RPMsg, receiving messages be-

tween the cores of supported devices becomes possible
through shared-memory.
This messaging system allows for the Linux user-space

to gain access to low-level memory for communication
through a device [5].

III. Implementation

A. Motivations & requirements

As for the motivation on pursuing the deployment of
micro-ROS on a HMP, we want to show an example and
provide a way to use them in a ROS environment. The
hardware is available; we might as well use it.
The promise of having intra-chip memory being used

for data transfer between nodes is exiting. It gives a high
sealing on what the data transfer performance can be.
Hard real-time capability is a critical component for

some types of autonomous system and we think that
proposing a full, separated RTOS stack available for ROS
on the same SoC will power a lot of development.
In addition to the presented motivations, those require-

ments were determined:

- Using a standard communication layer. We
want to keep the system portable to other targets,
other HMP boards; without the need to maintain a
new system over the evolution and new versions of
the underlying systems such as Linux or ROS2.

- No modification of the software stack (ROS2,
Linux modules, micro-ROS agent, micro-ROS li-
brary) except for the transport layer. The reasoning
here is the same as for the first point: the use of the
new communication layer should be transparent for
the other components of the overall ROS2 system.

B. General architecture

The usual setup for using both ROS2 and micro-ROS
for robots provides number of benefits, from unified com-
munication to access to a standardized development plat-
form. A proposed setup for the deployment on an HMP
can be seen in Fig. 3, which can be compared with Fig.
1, running the same system on two devices.
Multiple adaptations are required to make this integra-

tion possible.

- 27 -



Fig. 3. Top-level view of the proposed architecture for this project.

While a functional RPMsg communication is obtainable
without major difficulties, as shown in the official docu-
mentation, modifications of both the ROS2 Agent and
the micro-ROS Client are needed in order for the systems
to know and use RPMsg as a protocol to transfer DDS
messages in both directions.

Similarly to what is seen on Fig. 1 in the previous
section, we have a ROS2 stack (in orange) and a micro-
ROS system (in green), but running on the same SoC.
In this setup, the ROS2 Agent on the left needs to be
accommodated to support RPMsg as a transport layer.

C. Agent

In a ROS2 setup meant to communicate with a micro-
ROS system, the Agent is a key component that allows
to transmit back and forth the data packets in a way that
is compatible with DDS, making the micro-ROS device
able to subscribe and publish topics to the overall ROS2
ecosystem.

Fig. 3 shows the position of this critical element in the
global structure. As for the naming system, this compo-
nent will often be referred to as ”micro-ROS Agent”, but
it must be clear that the Agent is a C++ ROS2 node
deployed on Linux, not a part of the RTOS micro-ROS
deployment.

The current implemented architecture of this system
was made by modifying the code of the default serial agent
and is visible in Fig. 4.

A key aspect was to keep the change as reduced as
possible, thus only the transport system was modified to
be able to use OpenAMP.

In the current state of the system, the TermiosAgent

and the OpenAMPAgent are both classes whose methods
can be used by the general micro-ROS Agent as the trans-
port layer. The TermiosAgent class includes the ::init

and ::fini methods that will, respectively, create and
destroy the file descriptor (fd) used to access the RPMsg
device.

The setup of this file descriptor is not trivial as it re-
quires extensive configuration for the RPMsg communi-
cation. This includes an initial handshake with the MCU
before the initialization phase of ROS.

The OpenAMPAgent contains the read and write meth-
ods themselves, allowing RPMsg to be used as a ROS trans-
port. Little modification was required in this class as most
of the setup is happening during the init phase.

The code for the agent is freely available [6], as a fork
of eProsima’s own source.

Fig. 4. Software architecture of the micro-ROS Agent.

D. Client

Fig. 5 shows the data flow for both incoming and out-
coming data packages for the micro-ROS client. The var-
ious read and write functions needed to be implemented
within the two main FreeRTOS tasks to communicate
with ROS are also visible.
The data reader stream can be seen in orange at the

top of the figure, with the stream buffer making the link
between the RPMsg callback and the micro-ROS functions.
The data writer function is in green at the center. The
reason of being for these two tasks is the fundamental
incompatibility between what micro-ROS expects a ’read’
function to be and the way RPMsg manages the same
functionality.
In micro-ROS, we need to have four (init, read, write

and close) function pointers that can be passed to the
various ROS2 methods.
In the other hand, the read function in RPMsg can

only be a callback with a specific format, including the
necessity to deal with the interrupt routine service (IRS).
This lead to the creation of a message buffer that

bridges both worlds: the buffer can store one or more
message from the callback function, waiting for the micro-
ROS read function to claim it.
It is to be noted that this only applies to the read

function, as the write function from the micro-ROS setup
can directly use the RPMsg function.
Fig. 6 shows the pseudo-parallel aspect of the micro-

ROS firmware tasks.

- The black default task is simply the main() func-
tion starting the micro-ROS task.

- The red micro-ROS task will then make further
setup and create the RPMsg task.

- The green RPMsg task will then setup the shared
memory configuration, before both tasks wait for
something to be received from another ROS node.

To implement this Client, the example firmware for run-
ning OpenAMP on the ZynqMP SoC was used as a base,
on top of which a statically compiled micro-ROS library
was deployed.
The source for the client is freely available [7].

- 28 -



Fig. 5. Software architecture for the micro-ROS Client firmware and FreeRTOS Tasks.

Fig. 6. Mains function tasks running the micro-ROS Client.

TABLE I
Deployment environment

SoC Zynq UltraScale+ MPSoC
ARM Cortex-A53, 4 cores 1.5GHz
ARM Cortex-R5F, 2 cores 600MHz

RAM DDR4 4GB
Cortex-A53 Ubuntu 22.04

Linux v.5.15.0-1023
ROS2 v. Iron Irwini

Cortex-R5F FreeRTOS v.10
Build in Vitis IDE 2023.1
micro-ROS v. Iron Irwini

IV. Evaluation

A. Environment

The proposed system was deployed and tested on a Xil-
inx KRIA KV260 single-board computer. See Table I for
details on the various hardware and software used. The
general HMP architecture of this ZynqMP processor was
already visible in Fig. 2, but here we have some details
on the software running on it as well as the exact core
names.

B. Challenges & difficulties

The main challenges of this projects implementation
were the deployment of micro-ROS on the MCU part of
our HMP boards SoC and the adaptation of micro-ROS
transport Agent to understand and use OpenAMP.
The first part required to adapt and port micro-

ROS to an non-supported device. The separated cross-
compilation of the library for the specific ARM core was
needed before being able to merge it into a Xilinx firmware
development pipeline.

The second part involved dealing with custom transport
for micro-ROS Agent. Eventually, a fork and modification
of an existing transport (serial) was done, requiring to fit
the RPMsg initialization and functions into the Agent
class.

C. Performances

Running a communication system over shared mem-
ory instead of serial wires provides an obvious potential
benefit: data transfer speed. With the described system
deployed, it is possible to make early data transfer speed
measurements.

A comparative test was run between our new RPMsg

DDS transport layer and a more conventional one, utiliz-
ing the Nucleo F446ZE board as a micro-ROS target and
communicating with it using serial (UART).

Fig. 7 and 8 show a set of measurements of packages
transmitted back and forth to the Client from the point
of view of a ROS2 node behind the Agent, and the prob-
ability density of the transmission time for a single byte
in each case.

Here are the characteristics of the transfer:

- The raw package transfer time and probability den-
sity functions for each case were computed, as well
as the values for the average and the standard devi-
ations, as seen in Table II.

- Two package sizes were chosen for this first test: 16
and 32 bytes. The size was supposed to be under
50 bytes since this is the default limit for example
micro-ROS firmware running on the Nucleo board.

- Each measurement was made by sending only ASCII
characters, as to ensure that the Python node will
transmit a fixed, known number of bytes, without
conversions.

- Each measurement was made by sending 10,000 pack-
ages of data, leading to a total of 160KB or 320KB

being transmitted in each case.

- The ping demonstration function of the firmware was
disabled in order to accelerate the transmission and
avoid variations in the data transfer speed both for
the Nucleo board used for serial tests and the Cortex-
R5F on the HMP.

- 29 -



TABLE II
Data transfers for each measured case.

Average Average Standard deviation
[ms/B] [KB/s] [ms/B]

16B RPMsg 0.614 1.6 0.0133
32B RPMsg 0.305 3.3 0.0067
16B UART 0.789 1.3 0.028
32B UART 0.480 2.1 0.0158

Fig. 7. Probability density for the data of the figure 8.

Fig. 8. Measurements of the time for 10’000 packages to go back
and forth to the real-time core, measured at the Agent.

Two main takeaways are clear with Fig. 7 and Fig. 8:

- The general data speed was improved, but not as
dramatically as expected. DDR memory being typi-
cally a thousand time faster that serial for raw data
transfer speed, we would expect a more significant
difference. This shows that the overhead of the Ope-
nAMP and/or RPMsg system must be significant.

- However, the transfer time for RPMsg packages
seems to not depend on its size, which appears as
an net advantage of shared-memory over serial. This
leaves room for further improvements in the future
implementations.

D. Contribution

Overall, this project contributed to the ROS and
robotic community by providing a new way to deploy the
micro-ROS firmware.
We think that the modularity of ROS is particularly

adapted at the nature of robotics development, with a

variety of hardware being access. In that context, our
solution proposed yet another way to access and commu-
nicate with devices, existing alongside other deployment
solutions and options. Deploying micro-ROS on an HMP
is, to our best knowledge, novel to this paper.

V. Future work & developments

A. Performance enhancements

The first move that will be made from this early version
of the deployment is to try and enhance the transfer speed.
As the package throughput seems to be fairly size-

agnostic, implementing larger package transfer capabil-
ity should lead to significant performance gains. Differ-
ent type of package type might also improve the raw bite
transfer rate of the system by having less overhead.
Within the Client firmware implementation, copies of

the data are currently performed. Getting rid of it in a
new implementation should also improve responsiveness
and data transfer speed.
Eventually, there is the option of working with the

device’s virtio system directly instead of RPMsg. This
might require more adaptations since it is a less standard
communication channel than OpenAMP.
Combining these points, we hope to have a significant

gain of performance for this system of DDS messaging
within a chip, taking full advantage of the shared-memory.

B. Ease of use

The presented architecture is currently in a very
prototype-y state.
In order for this framework to be useful to other peo-

ple, some further effort will be made to improve its ease
of use. In particular we will be creating and publishing
more documentation as well as making the sources more
generally useful.

C. Deployment on other HMPs

As presented in the requirements, the goal of this
project is to make the software abstraction layers as trans-
parent as possible. In that regard, the deployment of the
system on a different SoC is something to be tested.
We have good hope that the OpenAMP Agent will be

re-deployable without any issue as a ROS2 node.
The micro-ROS Client, however, might need extra at-

tention for new hardware, as it was already a challenge
for this project.

D. Implementation in robotics

The use of ROS2 in combination with micro-ROS in
the context of a walking robot has been archived before
[8] but typically on separated hardware.
As the sensors, motors and actuators access must be

real-time compliant, the connection to a micro-controller
is required. With the usage of an HMP, it becomes pos-
sible to have a more direct access to these elements from
the Linux devices.
With this advantage of using an HMP to deploy a robot

firmware, a goal of our project is to be used for a hexapod
robot [9] in order to improve the gait and walking control
[10] as well as the vision and sensing capabilities.

- 30 -



Furthermore, the modular nature of ROS should allow
the system to scale up seamlessly. Integrating other de-
vices, nodes or even other HMPs is also something we
want to work on for our robotic deployments.

E. Tracing & in-depth monitoring

A key application of the described system would be
to enable tracing and debugging for ROS2 as discussed
in a previous research [11]. The authors propose a low-
overhead tracing mechanism for ROS2 and we would
like to extend it to the micro-ROS devices. This effort
should improve comfort for development and debugging
on micro-ROS MCUs, including on an HMP.

VI. Summary & Conclusions

The successful integration of the ROS ecosystem into
a device with heterogeneous cores, as discussed in this
paper, offers numerous advantages for embedded system
development, robotics, and beyond.

The novelty of the implementation presented in this
publication resides in the fact that this is the first time
a micro-ROS deployment was made on an commercial
HMP. The purpose is to demonstrate the possibility of
an intra-chip communication for ROS, showing what the
challenges are but also the potential performance capabil-
ities.

Fast communication between the real-time and the gen-
eral purpose processors within the same chip gives the
Linux-based control side a more direct access to the data
gathered by sensor. The real-time system can be accessed
while reducing the number of physical components and
cables being used for a similar functionality.

Testing and evaluating such system is a continuous pro-
cess, and since this technology is only as valuable as the
practical benefits it can provide, further improvement and
newer implementation versions will be worked on. The
use of HMP for robots, especially in an academic context
will provide a greater degree of integration for a cost way
lower than other custom solutions such as FPGA or cus-
tom designed chip. The processors within the HMP are
standard, but their setup onto a single silicon should be
beneficial. As ROS2 and micro-ROS implementation are
used as a base system for robotic application development
and research, we hope these result to be meaningful for
the ROS and embedded systems community as a whole.

Acknowledgements

This paper is based on results obtained from a project,
JPNP23015, commissioned by the New Energy and In-
dustrial Technology Development Organization (NEDO).
The research is supported by the ”Joint Research Promo-
tion Program” of Aichi Science and Technology Founda-
tion. Financial support for this project came from from
Nanzan University as well. Finally, we also would like to
thank Alexandra Elbakyan.

References

[1] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic,
B. Priyantha, and F. Zhao, “Energy-optimal software
partitioning in heterogeneous multiprocessor embed-
ded systems,” DAC ’08: Proceedings of the 45th an-
nual Design Automation Conference, pp. 191–196,
2008.

[2] “Remote processor framework.” https:

//www.kernel.org/doc/html//v6.4/staging/

remoteproc.html. Accessed: 2023-11-03.

[3] L. Cuomo, C. Scordino, A. Ottaviano, N. Wistoff,
R. Balas, L. Benini, E. Guidieri, and I. M. Savino,
“Towards a risc-v open platform for next-generation
automotive ecus,” in 2023 12th Mediterranean Con-
ference on Embedded Computing (MECO), pp. 1–8,
2023.

[4] “Fast dds - the most complete open source dds
middleware.” https://www.eprosima.com/index.

php/products-all/eprosima-fast-dds. Accessed:
2023-11-03.

[5] “Linux rpmsg framework overview.” https:

//wiki.st.com/stm32mpu/wiki/Linux_RPMsg_

framework_overview. Accessed: 2023-11-03.

[6] “Github - sunoc - micro-xrce-dds-agent.” https:

//github.com/sunoc/Micro-XRCE-DDS-Agent/

tree/develop. Accessed: 2023-11-03.

[7] “Gitlab - libmicroros kv260.” https://gitlab.com/
sunoc/libmicroros_kv260. Accessed: 2023-11-03.

[8] N. Weerakkodi, I. Zhura, I. Babataev, N. Elena,
A. Fedoseev, and D. Tsetserukou, “Hyperdog: An
open-source quadruped robot platform based on ros2
and micro-ros,” pp. 436–441, 10 2022.

[9] K. Tanada, S. Inagaki, Y. Murata, R. Kato,
and T. Suzuki, “Semi-autonomous walking control
of a hexapod robot based on contact point plan-
ning and follow-the-contact-point gait control,” in
Robotics in Natural Settings (J. M. Cascalho, M. O.
Tokhi, M. F. Silva, A. Mendes, K. Goher, and
M. Funk, eds.), (Cham), pp. 289–300, Springer In-
ternational Publishing, 2023.

[10] H. Hosogaya, S. Inagaki, and T. Suzuki, “Fcp
gait control for hexapod robot capable of decreas-
ing/increasing number of walking legs,” Transactions
of the Society of Instrument and Control Engineers,
vol. 58, pp. 304–313, 06 2022.

[11] C. Bedard, I. Lutkebohle, and M. Dagenais, “ros2
tracing: Multipurpose low-overhead framework for
real-time tracing of ros 2,” IEEE Robotics and Au-
tomation Letters, vol. 7, no. 3, pp. 6511–6518, 2022.

- 31 -

https://www.kernel.org/doc/html//v6.4/staging/remoteproc.html
https://www.kernel.org/doc/html//v6.4/staging/remoteproc.html
https://www.kernel.org/doc/html//v6.4/staging/remoteproc.html
https://www.eprosima.com/index.php/products-all/eprosima-fast-dds
https://www.eprosima.com/index.php/products-all/eprosima-fast-dds
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://github.com/sunoc/Micro-XRCE-DDS-Agent/tree/develop
https://github.com/sunoc/Micro-XRCE-DDS-Agent/tree/develop
https://github.com/sunoc/Micro-XRCE-DDS-Agent/tree/develop
https://gitlab.com/sunoc/libmicroros_kv260
https://gitlab.com/sunoc/libmicroros_kv260

	Introduction
	Background
	ROS2, DDS & micro-ROS
	HMP
	OpenAMP & RPMsg

	Implementation
	Motivations & requirements
	General architecture
	Agent
	Client

	Evaluation
	Environment
	Challenges & difficulties
	Performances
	Contribution

	Future work & developments
	Performance enhancements
	Ease of use
	Deployment on other HMPs
	Implementation in robotics
	Tracing & in-depth monitoring

	Summary & Conclusions

