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Abstract— As Strong Lottery Tickets (SLTs) can

build highly accurate neural networks from random

weights and binary masks, specialized SLT hardware

enables efficient inference. Its performance, however,

depends on the inference accuracy of an SLT found

in its training process. We propose Ramanujan Edge-

Popup, which explores SLTs through the lens of spec-

tral graph theory and obtains sparse and accurate

SLTs. The experiment with VGG-11 using CIFAR-

10 shows that Ramanujan Edge-Popup achieves 5.78%

better accuracy than Edge-Popup with 97.02% spar-

sity.

I. Introduction

Strong Lottery Ticket (SLT) is a sparse subnetwork that
achieves high accuracy comparable to trained dense Deep
Neural Networks (DNN) within an over-parameterized
randomly weighted DNN. The accurate subnetwork can
be obtained by masking the random weights.
SLT has attracted attention as one of the methods for

reducing the amount of DNN operations. Recently, Hid-
denite [4], the specialized hardware for SLTs, enabled ef-
ficient inference. It reconstructs the SLT with only a bi-
nary mask—supermask [13]—and a random seed because
a random number generator can generate random weights
from the random seed.
However, The performance of architectures for SLTs

such as Hiddenite depends on the accuracy and sparsity
of the SLT itself. Therefore, it is necessary to obtain
SLTs that are sparser and more accurate to make such
architectures more useful.
In DNN pruning, it is empirically considered that the

quality of pruned networks is related to spectral graph
theory. Recently, Pal et al. [8] showed that trained pruned
networks further improve accuracy by pruning so that
each layer is Ramanujan graph: a sparse graph that has
robust connectivity in spectral graph theory. Now, in the
case of not optimizing weights, i.e., searching SLTs, does
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Fig. 1. The learning procedure comparison of EP and R-EP at the
l-th layer.

knowledge based on spectral graph theory improve the
performance of SLTs?

This paper proposes the Ramanujan Edge-Popup (R-
EP) algorithm, which searches sparser and highly accu-
rate SLTs through the lens of spectral graph theory. R-EP
finds the supermasks such that each layer is a Ramanujan
graph. It is the extension of the Edge-Popup (EP) [9], the
first algorithm to search successfully for SLTs. In experi-
ments on CIFAR-10 using VGG-11, R-EP achieves 5.78%
higher accuracy (77.88%) than EP (72.10%) for the same
sparsity. Interestingly, applying the layer-wise sparsity of
R-EP to EP also improves the accuracy.

To our knowledge, R-EP is the first attempt to use
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Fig. 2. Examples of bipartite graphs with the same number of
edges and different connectivity. The left graph is an ordinary
bipartite graph. In contrast, the right is a Ramanujan graph.

the perspective of spectral graph theory in the search for
SLTs. If the graphical properties of SLTs are revealed, we
can reduce its search space. It will be feasible to obtain
accurate SLTs without using back-propagation by solv-
ing discrete optimization problems if the search space is
sufficiently reduced.

II. Strong Lottery Ticket

To date, it has been theoretically proven that SLTs exist
in DNNs under various conditions. Cunha et al. [1] have
proven they exist in CNN architectures. Diffenderfer and
Kailkhura [2] have shown that they also exist in binarized
DNN. Recently, the existence of SLTs within Equivariant
Neural Networks has been revealed by Ferbach et al. [3].
SLTs exist in the architecture of various tasks, such

as generative models [12] and GNNs [3]. Therefore, the
hardware for SLTs has the potential to solve various tasks
efficiently.
Edge-Popup (EP) is a notable algorithm for finding

SLTs. As shown in Fig. 1, EP has a score for each weight
and masks weights whose scores are below a top-k % score
value. Note that (k/100) ∈ [0, 1] is a value predefined as
the density of the supermask in each layer, and the spar-
sity means (1− k/100). It searches for more accurate su-
permasks by updating scores instead of weights through
back-propagation.

III. Ramanujan Graph

In spectral graph theory, the Ramanujan graph is a
highly connected sparse graph. For the general graph,
Hoory et al. [6] define a Ramanujan graph as Def. 1.

Definition 1. Let G be an unweighted and connected
graph. Let G̃ be the universal cover of G. Then, the graph
G is a Ramanujan graph if λ(G) ≤ ρ(G̃). Here λ(G) is
the second-largest eigenvalue of G and ρ(G̃) is the spectral
radius of G̃.

Although it is challenging to calculate ρ(G̃) numeri-
cally, we can determine that a graph G satisfying λ(G) ≤√
davgL(G)− 1 +

√
davgR(G)− 1 ≤ ρ(G̃) is a Ramanu-

jan graph by using the Cor. 1 given by Hoory [5] since

Algorithm 1: Ramanujan Edge-Popup

input: Dataset D = {(xi, yi)}, number of layers
L, number of samples N ,
scores Θ = {θ(1),θ(2), ...,θ(L)},
sparsities S = {s(1), s(2), ..., s(L)},
score thresholds P = {p(1), p(2), ..., p(L)}

1 for (xi, yi) ∈ D do
2 for l in 1, 2, ..., L do
3 Sampling the sparsities

4 S = {s(l)} ∪ {s1, s2, ..., sN} s.t. si ∈ [0, 1];
5 Sort S in descending order;
6 for s in S do
7 p = Percentile(θ(l), s);

8 Get a mask m(l) using θ(l) and p;

9 Calculate ∆R for m(l);
10 if ∆R ≥ 0 then

/* Satisfy the property of

Ramanujan graph */

11 s(l) = s;

12 p(l) = p;
13 break;

14 end

15 end

16 end
17 Edge-Popup(Θ,P );

18 end

each layer of NN can be regarded as an irregular bipar-
tite graph. Here davgL(G) and davgR(G) are left and right
average degree of the bipartite graph G, respectively.

Corollary 1. For irregular bipartite graph G with mini-
mal degree at least two, the spectral radius of G̃ satisfies
ρ(G̃) ≥

√
davgL(G)− 1 +

√
davgR(G)− 1.

Recent experimental results have shown a relationship
between the robust connectivity of a Ramanujan graph
and the accuracy of the trained subnetwork. Pal et al. [8]
found that pruning the dense DNN so that the pruned
network preserves Ramanujan graph properties improved
the accuracy of the trained subnetwork. We are motivated
by the work of Pal et al. to extend the idea to SLT search.
Fig. 2 shows the example of an ordinary bipartite graph
and Ramanujan graph.

IV. Ramanujan Edge-Popup

This section proposes R-EP for finding the SLTs where
each layer is a Ramanujan graph. As shown in Fig. 1,
R-EP, like EP, explores the supermasks by updating the
score corresponding to each weight. However, R-EP uses
a randomly sampled value p within the score θ(l) as a
score threshold for masking weights instead of the top-
k % score, unlike EP. R-EP samples N thresholds based
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TABLE I
Comparison of EP, R-EP, and R-EP∗ with VGG-11 using

CIFAR-10. EP∗ means EP using the same layer-wise sparsity
of the supermask searched by R-EP.

Algorithm Top-1 Test Acc. [%] Sparsity [%]

EP 72.10 97.02

R-EP 77.88 97.02

EP∗ 78.85 97.02

on the (N − 1) random sparsities and the sparsity of the
supermask in the previous iteration. Here, a threshold
for sparsity s is obtained as the (100 × s)-th percentile
of θ(l). Supermask update is completed by finding the
supermask, which is a Ramanujan graph, or trying out
all the thresholds. If the supermask m(l) obtained by
using a threshold is a Ramanujan graph, i.e., ∆R :=√
davgL(m(l))− 1 +

√
davgR(m(l))− 1 − λ(m(l)) ≥ 0,

the SLT using the supermask is also a Ramanujan graph.
Hence, R-EP uses the threshold. It facilitates the search
for sparser supermasks by trying the threshold in order
from largest to smallest. Algo. 1 provides the pseudocode
of R-EP in one epoch.

V. Experiments

This section evaluates the performance of R-EP on im-
age classification using the experimental setups as shown
in Sec. A. Sec. B show that the SLT, where each layer is
a Ramanujan graph, significantly improves performance
over the one obtained by EP.

A. Experimental Settings

We evaluate R-EP with VGG-11 [11] using the CIFAR-
10 [7] dataset. We use stochastic gradient descent (SGD)
with momentum of 0.9 and weight decay of 0.0001. We
train VGG-11 for 100 epochs, starting with the learning
rate of 0.01 and multiplying by 0.1 after 50 and 75 epochs.
We initialize weights to use Signed Kaiming Constant
(SKC) [9] with the scaling factor of

√
1/(1− s). Here

s is the sparsity of each layer, and it varies dynamically
with each update of the supermask. R-EP samples 101
thresholds.

B. R-EP vs. EP

Tab. I compares EP and R-EP for the same overall spar-
sity. R-EP improves accuracy by 5.78% over EP. Inter-
estingly, EP∗, which is the EP using the same layer-wise
sparsity of the supermask searched by R-EP, achieves high
accuracy (78.85%) equivalent to R-EP. These results sug-
gest that the concept of spectral graph theory can lead to
more accurate supermasks.

VI. Conclusion and Future Works

This paper has shown that searching SLTs through the
lens of spectral graph theory significantly improves search
performance over EP. As far as we know, this is the first
time the concept of Ramanujan graphs has been intro-
duced into the context of SLTs. The finding that utilizing
spectral graph theory can lead to highly sparse and ac-
curate SLTs suggests exploring SLTs to use a completely
different approach, such as searching ones based on only
graph properties from the conventional one.
Future works will extend R-EP to more challenging

datasets such as CIFAR-100 and ImageNet [10]. Further-
more, we aim to elucidate the graph properties of SLTs
theoretically and to establish a method that can search
for SLTs on the HW using their graph properties.
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