
Model Reduction Using a Hybrid Approach of
Genetic Algorithm and Rule-based Method

Wuqian Tang1, Chuan-Shun Huang1, Yung-Chih Chen2, Yi-Ting Li1, Shih-Chieh Chang1, and Chun-Yao Wang1

1National Tsing Hua University, Taiwan, ROC
2National Taiwan University of Science and Technology, Taiwan, R.O.C.

Abstract—Model reduction is a technique that reduces the com-
putational resources required to run a model (neural network)
by pruning parameters or structures in the model. Most of the
model reduction algorithms achieve the goals of model reduction
and accuracy preserving through multiple iterations of pruning-
retraining process. However, this retraining process is quite time-
consuming, making the model size reduction algorithm particularly
inefficient, especially when the parameters of model exceed tens of
millions. In this paper, we propose a hybrid approach combining
genetic algorithm (GA) and rule-based method. With the integration
of GA and a rule-based method, the time cost of searching for a
well-performing model can be significantly reduced. This strategy
greatly reduces GA’s search space and time cost. With a very limited
number of retraining epochs (<10), the accuracy and pruning ratio
(sparsity) of the reduced model can catch up the results of state-
of-the-art. We conduct experiments on a gesture recognition model
with over 30 million parameters. The experimental results show that
for this model, our approach prunes 74.6% of the parameters with
3.8% accuracy drop without retraining. With only three epochs of
retraining, our approach prune 93.1% of the parameters without
any accuracy drop.

I. INTRODUCTION

With the success of widespread applications of Neural Net-
works (NNs) in various fields, such as image recognition, speech
processing, and gesture recognition, the capabilities and com-
plexity of NNs (models) have increased significantly. Since the
proposal of the backpropagation [22], the advent of Convolutional
Neural Networks (CNNs) [13], and the introduction of the learn-
ing algorithm for Deep Belief Networks (DBNs) [9], NNs can
tackle increasingly intricate problems.

However, as the complexity of the problems being addressed
escalates, the size of the models as well as the computational
requirements and energy consumption for running these models
also increase considerably. Therefore, model reduction has be-
come an increasingly crucial task. Typical objectives for model
reduction are preserving the accuracy, minimizing parameter
count, decreasing energy consumption in computing, and reduc-
ing model latency, enabling the reduced model to be implemented
in embedded systems or resource-limited edge devices [6]. A
multitude of pruning techniques have been proposed to address
this challenge [5], [7], [15], [20], [27].

A common approach to model reduction typically involves one
or more cycles of pruning-retraining after obtaining the initial
model. Recently, many model reduction techniques have been
proposed [2], [7], [16]. One-shot pruning [2], [7] is a tech-
nique that pruning and retraining are performed only once after
obtaining the initial model. Subsequently, researchers proposed
methods that perform multiple iterations of pruning and retraining
to achieve better results [16].

Pruning is achieved by removing unimportant parameters, e.g.,
biases and weights, or structures, e.g., neurons and filters, in the

models. In the pruning process, the main focus is on the weights
rather than the biases. This is because the quantity of weights
usually far exceeds that of biases, and the impact of weights on
the model’s complexity and performance is significantly greater
than that of biases. Various pruning methods can be employed
to eliminate weights in the model during the pruning phase [4],
[12], [14], [16]. For instance, random pruning of weights [12],
layer-wise pruning [16], and global magnitude pruning [4], [14].
Random pruning of weights is a method to eliminate a random
selection of weights from the model. Layer-wise pruning is a
strategy that prunes a fixed percentage of weights for each layer.
In contrast, global magnitude pruning adopts a holistic view of
the model and prunes a fixed percentage of weights, starting with
those closest to zero in magnitude across the entire model.

On the other hand, some studies utilized genetic algorithms
(GA) to explore models for achieving weights pruning [3], [19].
They used binary strings to represent models, where 0 signifies
that the weight is pruned and 1 indicates the weight is retained.

After the pruning phase, retraining is a typical succeeding
phase for accuracy recovery. For example, a popular method is to
fine-tune the parameters by retraining for multiple epochs using
the fixed learning rate [7]. Other retraining strategies include
the rewind strategy [21] and the cyclic learning rate restarting
strategy [12]. The former initially uses a higher fixed learning
rate, then switching to a lower fixed learning rate, while the latter
periodically varies the learning rates.

However, it is worth noting that retraining is a very time-
consuming process. Previous methods often require dozens or
even hundreds of epochs in the retraining phase for recovering
the accuracy of models. This phase can span days or even
weeks. Thus, in this work, we propose a hybrid approach to
model reduction, which integrates a genetic algorithm and a rule-
based method. Our approach applies a GA iteratively during
the pruning phase to generate and select superior offspring that
display high quality in both accuracy and sparsity. By identifying
common features among these offspring models with high quality,
we are able to extract pruning rules that will be used in the
pruning strategy. Following the pruning, we conduct a brief
fine-tuning phase consisting of a handful of retraining epochs.
The experimental results demonstrate that a model with a few
of pruning-retraining cycles, typically around two or three, are
sufficient to catch up the performance of leading model in terms
of accuracy and pruned percentage of parameters. Not only does
this approach tackle the existing challenges head-on, but it also
hints at the potential of its extensibility. Our method provides a
promising direction for structured pruning of models in the future,
broadening the horizon for further research and application.

The main contributions of this work are threefold:

SASIMI 2024 ProceedingsR4-5

- 281 -

Fig. 1: Genetic Algorithm Flowchart.
• We propose a hybrid approach of combining GA and rule-

based method for efficient model reduction. This is the
first attempt to integrate two distinct methods for model
reduction.

• As compared to the state-of-the-art, the proposed approach
significantly saves the search cost to achieve a highly re-
duced model with a similar accuracy.

• Our approach can prune 74.6% parameters with a 3.8% accu-
racy drop without retraining on a 30 million-parameter ges-
ture recognition model. With just three epochs of retraining,
our approach prunes 93.1% parameters while maintaining
accuracy.

The remainder of this paper is organized as follows. Section
II introduces the background. Section III presents the proposed
approach. Section IV shows the experimental results. Finally, we
conclude this paper and present the future work in Section V.

II. PRELIMINARIES

In this section, we provide essential background on model
reduction, the fundamental process of NN pruning, and GA [10]
along with multi-objective evaluation. Additionally, we introduce
the proposed metric Pruning Effectiveness Per-Epoch (PEPE),
which is used to evaluate the performance of different model
reduction algorithms.
A. Backgrounds

GA, inspired by natural evolution, is an optimization method
dating from the 1970s [10]. Starting with a population of solu-
tions (chromosomes), its application in model reduction involves
pruning models. A fitness function measures each chromosome’s
effectiveness. Through selection, the fittest individuals reproduce
using crossover and mutation, promoting genetic diversity. Evo-
lution concludes when specific criteria are met, presenting an
optimal pruned model as the solution. Refer to Fig. 1 for a GA
flowchart.

Model Reduction is categorized into two types: unstructured
and structured methods. The structured method involves the
removal of entire neurons, channels, filters, or even layers in the
model. This method shrinks the model and elevates computational
efficiency when implemented on specific architectures.

On the other hand, unstructured method targets at parameter
removal. As this method results in a sparse model with many
parameters of 0s, it does not remove entire structural elements
as seen in the structured method. Consequently, the unstructured
method allows for potentially higher pruning ratios. Once de-
ployed on hardware optimized for sparse matrix computations,
model reduction through unstructured method can lead to lower
computational cost and power consumption. In pursuit of superior
pruning ratios, we adopt unstructured method in this work.

Both GA and Model Reduction play crucial roles in our
research. Detailed methodologies, including their nuanced appli-
cations and implementations, will be elaborated upon in Section
III.

B. Multi-objective Evaluation

Evaluating the performance of a reduced model involves a
multi-objective evaluation. In prior research [21], the performance
of a reduced model is typically evaluated based on three objec-
tives:

1) Accuracy Drop: This is defined as the decline in the top-1
accuracy compared to the original model. The accuracy drop can
be computed using EQ(1):

accdrop = accori − accpruned (1)

2) Sparsity: Also known as the pruning ratio, sparsity indi-
cates the degree of pruning in an entire model or a specific layer.
For example, if there were originally 100 parameters and 30 were
pruned, then the sparsity or pruning ratio is 30/100 = 30%.
Sparsity is computed using EQ(2):

sparsity =
npruned

|parameter| × 100% (2)

where npruned denotes the total number of parameters pruned
from the original model or a specific layer, and |parameter|
represents the total number of parameters in the original model
or a specific layer.

3) Search Cost: This metric signifies the total number of
epochs expended to obtain the reduced model. Since the pruning-
retraining process may be iteratively performed for multiple
times, and each retraining step needs a different number of
epochs, the search cost accounts for the total number of epochs
needed in all the iterations of the pruning-retraining process, and
is shown as EQ(3):

search cost =
N∑

i=1

epochi (3)

In EQ(3), N represents the number of pruning-retraining itera-
tions, and epochi denotes the number of epochs used in the ith

iteration of pruning-retraining. The search cost will be considered
when comparing the effectiveness of various model reduction
algorithms.

C. Pruning Effectiveness Per-Epoch (PEPE)

To compare different model reduction algorithms fairly, in this
work, we introduce a new metric, Pruning Effectiveness Per-
Epoch (PEPE). PEPE is a metric for evaluating the effectiveness
of model reduction algorithms, i.e., evaluating sparsity achieved
per search cost.

The PEPE is calculated by EQ(4):

PEPE =
sparsity

search cost
(4)

where search cost is computed using EQ(3). A higher value of
PEPE indicates that the algorithm is more efficient for finding a
pruned model.

However, it is important to note that PEPE should be eval-
uated under a designated acceptable accuracy drop (accdrop).
For instance, if we prune 99.99% of the parameters from a
model without retraining (epochi = 0), the PEPE value would
be infinite. However, this is not meaningful as the accuracy
of the model is lower than the acceptable level. Hence, we
compare different model reduction algorithms with the PEPE
metric under a specified acceptable accdrop, e.g., accdrop ≤ 2%
or accdrop ≤ 5%.

- 282 -

III. THE PROPOSED APPROACH

In this section, we present the proposed hybrid approach, which
combines a pruning strategy extraction through GA, and a rule-
based method. Since the number of biases is relatively small as
compared to the number of weights, e.g., less than 0.1% of the
total number of parameters in the model of our experiments, we
do not include the biases in the pruning step. However, the biases
are included in the total number of parameters when calculating
the sparsity of an entire model.

A. Genetic Algorithm Design
In the traditional GA applications for model reduction, a chro-

mosome (also known as an individual) is a solution to a problem,
which is often represented by a string. If the representation of a
solution is large when the models are significantly large, e.g.,
containing tens of millions of parameters, the length of the string
becomes excessively long, leading to substantial overhead in
computation or storage. In this work, we propose an improved
GA to tackle this issue. The basic principles and procedures of
the GA employed in this work are described in the following
paragraphs.

1) Initialization: The GA begins with a population of potential
solutions, each is represented as a chromosome. Each chromo-
some stands for a pruned model and is encoded as a layer-pruning
vector. A layer-pruning vector is a sequence of integers, where
each integer represents the number of weights pruned in each
layer of the original model. If we have a model with N layers
that possess the weight attribute, we can represent the number of
weights counti in each layeri as follows:

C = [count1, count2, ..., countN] (5)

Consequently, the chromosome can be represented as a layer-
pruning vector,

P = [pruned1, pruned2, ..., prunedN] (6)

In EQ(6), prunedi denotes the number of weights pruned in the
ith layer, and 0 ≤ prunedi ≤ counti for each i where 1 ≤
i ≤ N . For each layer’s pruning, we use a magnitude pruning
strategy, i.e., the smallest weights (in terms of absolute value) in
the ith layer are pruned. Thus, every chromosome P corresponds
to a unique pruned model.

In the design of GA in this work, we generate an initial
population of 40 individuals, P1 ∼ P40. The group of individuals
can be represented as follows:

Iinit = [P1, P2, ..., P40] (7)

In EQ(7), Pi refers to the layer-pruning vector of the
ith individual. Each Pi can be represented as Pi =
[prunedi1, pruned

i
2, . . . , pruned

i
N]. During the generation of the

initial population, each prunedij in Pi is initialized to a random
number within the interval of [countj×0.5, countj×0.8], where
countj represents the number of weights in the jth layer of the
original model.

For example, consider a model with N = 3 layers, represented
by the following weights in each layer:

C = [100, 200, 150]

Two individuals, P1 and P2, are from the initial population Iinit.
The layer-pruning vector for the individual P1 is:

P1 = [pruned11, pruned
1
2, pruned

1
3] = [60, 110, 90]

For the individual P2:

P2 = [pruned21, pruned
2
2, pruned

2
3] = [70, 145, 105]

In this representation, P1 indicates that 60 weights are pruned
from the 1st layer, 110 from the 2nd layer, and 90 from the 3rd

layer. Similarly, for P2, 70 weights are pruned from the 1st layer,
145 from the 2nd layer, and 105 from the 3rd layer.

2) Fitness Value Calculation: The fitness function is used to
calculate the fitness value of each chromosome, signifying the
performance of a pruned model. We propose a metric - Pruned
Weight per Accuracy Drop (PWAD), to evaluate the fitness value
as EQ(8):

PWAD =
npruned

(accori − accpruned)
(8)

In EQ(8), npruned denotes the total number of pruned weights,
which can be calculated by accumulating the amount of pruned
weights in all the layers, as shown in EQ(9):

npruned =

N∑

i=1

prunedi (9)

Additionally, in EQ(8), accori represents the top-1 accuracy of
the original model, while accpruned stands for the top-1 accuracy
of the pruned model. A larger PWAD value represents better
performance of the corresponding pruned model. It is worth
noting that when the pruning ratio is relatively small, accpruned
may even exceed accori, resulting in a negative PWAD value.
Hence, we consider a negative PWAD value is better than a
positive one.

3) Selection: The goal of the selection process is to favor the
chromosomes with higher fitness values (PWAD) such that their
genes can be inherited to the next generation. We sort all the
individuals in a descending order by PWAD and retain the top half
of them. The retained individuals can be represented as Icurr =
[P1, P2, ..., P20].

4) Crossover: The crossover operation aims to produce new
offspring by swapping parts of the chromosomes from two parent
chromosomes. In our algorithm, we employ a technique called
“uniform crossover” [24], where two parents, denoted as Pi and
Pj (with i ̸= j), are paired randomly to generate new offspring.

For the uniform crossover, we first generate a binary string,
bin, of length N . Each position k in bin, is denoted as bink. If
bink is 1, the offspring’s gene at position k is inherited from Pi.
Conversely, if bink is 0, it is inherited from Pj .

For example, let’s consider a model with three layers and two
chromosomes:

P1 = [60, 110, 90] P2 = [70, 145, 105]

Assuming the generated binary string bin is [1, 0, 1], the child
chromosome Pchild will be constructed as:

Pchild = [60 (from P1), 145 (from P2), 90 (from P1)]

Therefore, Pchild will be [60, 145, 90].
This crossover process is repeated for 40 times, yielding a new

population denoted as Inext = [P1, P2, . . . , P40].
5) Mutation: The mutation process introduces slight alter-

ations to certain genes in a chromosome. Its importance lies in
introducing new traits to the population, ensuring diversity, and
enabling a comprehensive search throughout the evolution of the
algorithm. In our algorithm, each prunedij in the individual Pi of

- 283 -

Inext has a mutation probability of σ, which is called mutation
rate.

When mutation occurs, the value of prunedij is randomly
adjusted within the interval of [countj × 0.0, countj × 0.9]. This
mechanism ensures that our algorithm explores the search space
thoroughly and avoids getting stuck to local minima.

To illustrate the mutation process, consider a model P1 with
three layers: P1 = [60, 110, 90].

For the 2nd layer, we have count2 = 200. If the mutation
occurs for the genes in this layer, the mutated gene may become
175. Consequently, the mutated chromosome will be: Pmutated =
[60, 175, 90].

In this example, the mutation process led to the 2nd layer
having more weights pruned.

6) Replacement: To complete one generation cycle in the
evolutionary algorithm, the old population Icurr is replaced by
the newly generated population Inext. This replacement process
ensures that the population is continually evolving towards better
solutions by inheriting the characteristics of the newer generation.
After the replacement, the algorithm will then proceed with the
Fitness Value Calculation for the individuals followed by the
Selection process.

In our algorithm, the GA is performed for a fixed period of time
(3600 seconds), providing a balance between computational effort
and solution quality. After running the genetic algorithm, the set
of 10 individuals with the highest PWAD are selected, denoted
as Ibest. These individuals will serve as the basis for assisting
the rule-based method, which will be presented in Section III. B.

B. Rule-based Method
To search a good solution encoded with an M-bit binary string

in the solution space of GA, we face a challenge that the solution
space is extremely enormous, being equal to 2M , where M is
the total number of parameters. To mitigate this, we introduce
a Rule-based Method to assist the GA. Our approach aims to
find common features among the high-quality offspring obtained
from the GA, and reintegrate these features back into the GA.
This reintegration includes changing the encoding and altering
the initial population. By eliminating unnecessary search effort,
we can accelerate the GA, as detailed below.

1) Deriving Common Rules: We aim to find common features
among the individuals in Ibest obtained from the GA. These
common features need to be collated into rules that can be
reintegrated into the GA process. Three specific rules are derived
as follows:

Magnitude Pruning: we observed that the weights with smaller
absolute values had a higher likelihood of being pruned in each
layer of each individual in Ibest. Thus, we integrated this rule
into the GA by using the data structure of layer-pruning vector
as mentioned in Section III. A.

Compact-Key Layers: We noticed that when some layers are
very small, the pruning ratios of these layers are also very small
in all Pi of Ibest. Hence, these layers would be quite crucial
such that they need to be reserved in subsequent iterations of the
GA. We refer to these layers as Compact-Key Layers (CKL). In
practice, a layer is considered a CKL if and only if the number
of weights in the layer is less than 0.1% of the total number of
parameters in the original network and the pruning ratio of the
layer in each individual of Ibest is less than 20%.

Initial Layer-Pruning Vector (ILPV): In the first iteration of the
GA, each prunedij in the generated chromosome Pi is initialized

to a value within the interval of [countj × 0.5, countj × 0.8].
In subsequent (non-initial) GA iterations, we average the corre-
sponding prunedij in each Pi of Ibest to determine the initial
values for the new population. For randomization, we randomly
increase or decrease each generated individual by 5% of the
number of weights in the corresponding layer. The specific
generation formula for each Pinit is as follows:

Pinit = [..., (
1

|Ibest|

|Ibest|∑

i=1

prunedij) + Jitterj , ...] (10)

In EQ(10), Pinit is the initial layer-pruning vector for the new
population. |Ibest| is the number of individuals in Ibest, prunedij
represents the number of pruned weights in the jth layer of the
ith individual, and Jitterj denotes a random offset value, which
is obtained using EQ(11).

Jitterj = random[−countj × 0.05, countj × 0.05] (11)

In EQ(11), countj is the total number of weights in the jth

layer. Additionally, after generating Pinit, we manipulate each
prunedi in Pinit to ensure that its value falls within the interval of
[0, counti]. Specifically, we perform two operations: prunedi =
max(prunedi, 0) and prunedi = min(prunedi, counti).

Fig. 2: The General Flowchart of Our Approach.
2) Integration of Rules in GA: Having extracted the rules from

the optimal individuals, we then reintegrate these rules back into
the GA. These rules can help guide the GA in a more efficient and
effective manner. The reintegration methods for different types of
rules are as follows:

Magnitude pruning: This rule is integrated into the GA by using
a new encoding method. Specifically, each individual is no longer
represented as a binary string that encodes weights. Instead, it is
represented as a layer-pruning vector, where the ith element in
the vector represents the number of weights to be pruned in the
ith layer.

Compact-Key Layers (CKL): This rule helps guide the mu-
tation during the mutation process of the GA. In practice, we
avoid mutating on the CKLs to ensure that these layers remain
unpruned.

Initial Layer-Pruning Vector (ILPV): This rule affects the initial
population during the initialization of GA. The initial layer-
pruning vector for each individual in the population of the non-
initial GA is set based on EQ(10).

In combining the extracted rules with the GA, we can sig-
nificantly improve the efficiency in searching of high quality
solutions. Although in this work, we only extract three rules, this
hybrid approach can be generalized to other applications using
GA. The general flowchart of our approach is as shown in Fig.
2.

C. Pruning-Retraining
We perform several iterations of pruning-retraining to get the

final reduced model. According to the experimental results, two
to three iterations could lead to a reduced model with good
performance. The details of pruning and retraining are as follows.

- 284 -

TABLE I: Performance Comparsion of ResNets across Several Pruning-Retraining Iterations.

Dataset Model Iteration Sparsity (%) |Epoch| Accuracy (%) Accdrop (%) Runtime (s) PEPE
[12] Ours

CIFAR-10 ResNet-20

0 0 - 92.23 0 - - -
1 55.01 2 90.93 1.30 80 1.00 27.51
2 74.06 5 90.36 1.87 144 1.00 14.81
3 81.98 9 90.44 1.79 371 1.00 9.11

CIFAR-10 ResNet-56

0 0 - 93.51 0 - - -
1 55.96 2 93.16 0.35 208 1.00 27.98
2 75.08 5 92.20 1.31 303 1.00 15.02
3 82.94 9 91.59 1.92 914 1.00 9.22

CIFAR-10 ResNet-110

0 0 - 93.42 0 - - -
1 56.18 2 93.27 0.15 330 1.00 28.09
2 75.32 5 92.23 1.19 501 1.00 15.06
3 83.17 9 91.82 1.60 1442 1.00 9.24

1) Pruning: We iterate the GA for two times; each run cost
3600 seconds. The first run of GA yields Ibest and rules, which
include CKL and the ILPV. After incorporating these rules back
into the GA, we run the updated GA to obtain Ibest2. From
Ibest2, we extract new rules, including CKL and ILPV. These
rules serve as the strategies in the pruning phase. The CKL will
not be pruned, and the remaining layers will be pruned based on
their corresponding pruning ratios in ILPV.

2) Retraining: After pruning, we retrain the pruned model for
some epochs with respect to the accuracy drop. The retraining
strategy we used is fine-tuning [17] with a fixed learning rate
[23].

D. Overall Flow of the Proposed Approach

The overall algorithm of our approach is summarized as
follows:

We run GA and obtain the best individuals, Ibest. From Ibest,
we extract common rules, including CKL and the ILPV. These
rules are then incorporated back into the GA. With these rules, we
run GA again and obtain new best individuals, Ibest2. From Ibest2,
we extract new common rules, including CKL and ILPV, which
will serve as our pruning strategy. This strategy includes the CKL,
which will not be pruned, and ILPV, which dictates the pruning
ratio for the remaining layers. After pruning, we retrain the model
for 1-4 epochs depending on the accuracy drop. The retraining
involves fine-tuning with a fixed learning rate. The overall flow
of the proposed approach is depicted in Fig. 3.

Fig. 3: The Overall Flow of the Proposed Approach.

IV. EXPERIMENTAL RESULTS

We implemented the proposed approach using Python 3 lan-
guage and Pytorch Library [18]. The implementation of the state-
of-the-art was adapted from the works presented in [12]. The
experiments were carried out on a machine running Windows 10
Professional, equipped with an Intel i7-7700K CPU (4.2 GHz

and 32 GB RAM) and an NVIDIA GeForce GTX 1080 Ti GPU
(1481 MHz and 11 GB VRAM).

The experimental results are summarized in Tables I, II and III.
We used a benchmark that includes a gesture recognition model
sourced from R(2+1)D-18 [25], trained on the EgoGesture dataset
[1], [26]. Additionally, for comparison with previous research
results, our benchmark also included three ResNets [8], trained on
the CIFAR-10 and CIFAR-100 dataset [11]. The hyperparameters
used for training these models were adopted from the study by
Renda et al. [21]. The accuracy, sparsity, and runtime presented
in the tables were calculated by taking the average results of three
independent runs. In our experiment, we set the mutation rate σ
as 2.5%.

According to Table I, when allowing for a 2% accuracy drop,
our method notably improves PEPE compared to the state-of-the-
art at various sparsity levels. For instance, at sparsities over 80%,
our PEPE is more than nine times of that of the state-of-the-art,
suggesting our approach obtains the same pruned models with a
speed up of nine.

Table I showcases the efficiency of the three ResNets after
varying numbers of pruning-retraining cycles. We employ the
PEPE (Pruning Effectiveness Per-Epoch) metric to benchmark
these results. In [12] [21], 20% of the parameters are pruned in
every iteration and then retrained for a minimum of 20 epochs.
Consequently, the sparsity and search cost (retraining epochs)
increase at the same rate, making the PEPE metric of EQ(4) for
these state-of-the-art methods consistently equal 1.

For the state-of-the-art methods:

PEPESOTA =
20× |iteration|
20× |iteration| = 1 (12)

In Table II, the column Accori, Accpruned denotes the top-1
accuracy of the original model and the pruned model, respec-
tively. As can be seen from Table II, all three ResNets models
can achieve over 80% sparsity with less than 2% drop in accuracy
after 9 epochs of retraining. Furthermore, the gesture recognition
model can reach over 93% sparsity with an accuracy drop of less
than 1%. For the CIFAR-100 dataset, the performance was not as
prominent as with CIFAR-10. Nevertheless, we can still achieve
over 74% sparsity while maintaining an accuracy drop within 2%.

Table III summarizes the performance of the pruned gesture
recognition model after different numbers of pruning-retraining
iterations. The column |Epoch| denotes the number of epochs
used for retraining in each iteration, where the learning rate
of 2.45 × 10−5 was used in our experiment. For having an
acceptable accuracy ≥ 90%, we achieved a sparsity of 97.92%
after three iterations. Furthermore, to highlight the effectiveness
of our approach during the pruning phase, we show the results

- 285 -

TABLE II: Experimental Results with Accuracy Drop Less than 2%.

Dataset Model |Parameter| Accori (%) Accpruned (%) Accdrop (%) Sparsity (%) |Epoch| Runtime (s)

CIFAR-10
ResNet-20 269,722 92.23 90.44 1.79 81.98 9 371
ResNet-56 853,018 93.51 91.59 1.92 82.94 9 914

ResNet-110 1,727,962 93.42 91.82 1.60 83.17 9 1442

CIFAR-100 ResNet-56 858,868 69.66 67.72 1.94 74.06 8 366
ResNet-110 1,733,812 71.48 69.60 1.88 74.18 8 571

EgoGesture R(2+1)D-18 31,305,255 96.85 97.01 <0 93.07 3 521

TABLE III: Performance of Gesture Recognition Model
(R(2+1)D-18) across Several Pruning-Retraining Iterations

Iteration Sparsity (%) |Epoch| Accuracy (%) Runtime (s)
0 0.00 - 96.85 -
1 74.61 1 96.68 179
2 93.07 3 97.01 521
3 97.92 6 95.52 1054
1 74.61 0 93.07 <1

of a single pruning operation without retraining in the last row
of Table II. As can be seen, a high pruning ratio 74.61% was
achieved while still satisfying the accuracy requirement (93.07%)
for the model.

It is worth noting that the state-of-the-art method [12], was
not applied on CIFAR-100 dataset. As a result, we have refrained
from making a direct PEPE comparison for CIFAR-100 in Table I.
However, since PEPE of the state-of-the-art remains consistently,
our approach would exhibit a higher search efficiency on the
CIFAR-100 dataset as well.

These experimental results in Table I, II and III strongly
indicate the superior efficiency of our model reduction strategy,
especially when a minor accuracy drop for the pruned models is
acceptable.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a hybrid approach for model reduc-
tion, which uses a genetic algorithm and a rule-based method
to determine the pruning strategy during the pruning-training
cycles. Our approach demonstrates a higher efficiency than the
state-of-the-art methods for obtaining pruned models with similar
performance on several ResNet models. Although our approach
is currently applied to unstructured pruning, it could be further
extended to structured pruning. This will be our future work.

REFERENCES

[1] C. Cao, Y. Zhang, Y. Wu, H. Lu, and J. Cheng, “Egocentric
gesture recognition using recurrent 3d convolutional neural net-
works with spatiotemporal transformer modules,” in Proc. of
the IEEE International Conference on Computer Vision, 2017,
pp. 3763–3771.

[2] T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang,
Y. Shi, S. Yi, and X. Tu, “Only train once: A one-shot neural
network training and pruning framework,” Advances in Neural
Information Processing Systems, vol. 34, pp. 19 637–19 651, 2021.

[3] H. Chiroma, S. Abdulkareem, A. Abubakar, and T. Her-
awan, “Neural networks optimization through genetic algorithm
searches: A review,” Appl. Math. Inf. Sci, vol. 11, no. 6, pp. 1543–
1564, 2017.

[4] J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” arXiv preprint
arXiv:1803.03635, 2018.

[5] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep
neural networks,” arXiv preprint arXiv:1902.09574, 2019.

[6] S. Han, “Efficient methods and hardware for deep learning,” Ph.D.
dissertation, Stanford University, 2017.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in Neural
Information Processing Systems, vol. 28, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[9] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[10] J. H. Holland, Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and
artificial intelligence. University of Michigan Press, 1975.

[11] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of
features from tiny images. Toronto, ON, Canada, 2009.

[12] D. H. Le and B.-S. Hua, “Network pruning that matters: A case
study on retraining variants,” arXiv preprint arXiv:2105.03193,
2021.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

[15] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in
Proc. of the IEEE International Conference on Computer Vision,
2017, pp. 2736–2744.

[16] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking
the value of network pruning,” arXiv preprint arXiv:1810.05270,
2018.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep rein-
forcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch:
An imperative style, high-performance deep learning library,”
Advances in Neural Information Processing Systems, vol. 32,
2019.

[19] J. Poyatos, D. Molina, A. D. Martinez, J. Del Ser, and F. Herrera,
“Evoprunedeeptl: An evolutionary pruning model for transfer
learning based deep neural networks,” Neural Networks, vol. 158,
pp. 59–82, 2023.

[20] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions on
Neural Networks, vol. 4, no. 5, pp. 740–747, 1993.

[21] A. Renda, J. Frankle, and M. Carbin, “Comparing rewind-
ing and fine-tuning in neural network pruning,” arXiv preprint
arXiv:2003.02389, 2020.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[24] G. Syswerda et al., “Uniform crossover in genetic algorithms,” in
Proc. of International Conference on Genetic Algorithms, vol. 3,
1989, pp. 2–9.

[25] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M.
Paluri, “A closer look at spatiotemporal convolutions for action
recognition,” in Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6450–6459.

[26] Y. Zhang, C. Cao, J. Cheng, and H. Lu, “Egogesture: A new
dataset and benchmark for egocentric hand gesture recognition,”
IEEE Transactions on Multimedia, vol. 20, no. 5, pp. 1038–1050,
2018.

[27] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring
the efficacy of pruning for model compression,” arXiv preprint
arXiv:1710.01878, 2017.

- 286 -

