
A Study on an Interface Circuit for Burst Transfers from Synchronous
to Asynchronous Circuits Considering Cycle Times

Shogo Semba Hiroshi Saito
The University of Aizu The University of Aizu
shogo-s@u-aizu.ac.jp hiroshis@u-aizu.ac.jp

Abstract— In this paper, we propose an interface
circuit for burst transfers from synchronous to asyn-
chronous circuits. The proposed interface circuit re-
alizes burst transfers in a single handshake cycle. To
realize burst transfers, we decide the number of reg-
isters from the difference between cycle times of syn-
chronous and asynchronous circuits and burst length.
In the experiment, we compared the proposed in-
terface circuit with a FIFO-based interface circuit in
terms of energy consumption. The proposed interface
circuit could reduce energy consumption by at least
9.7%.

I. Introduction

Most digital systems are designed based on System-on-
a-Chip (SoC) composed of several circuits such as micro-
processors, memories, specific circuits, etc. When these
circuits are controlled by different clock signals, synchro-
nizers are required to reduce the metastability problem
between different clock domains.
To solve this problem, [1] proposed Globally Asyn-

chronous Locally Synchronous (GALS) systems composed
of several local synchronous circuits. In GALS systems,
each local synchronous circuit is controlled by an indepen-
dent clock signal and communicated with other circuits
asynchronously. To guarantee asynchronous communica-
tion, interface circuits are required between different syn-
chronous circuits.
To transfer data between synchronous and asyn-

chronous circuits, handshake-based interface circuits were
proposed in [2, 3, 4, 5]. Data is stored in the internal reg-
ister during the handshake process between synchronous
and asynchronous circuits. However, these interface cir-
cuits transfer only one data in a single handshake cy-
cle. Therefore, these interface circuits are not suitable
for burst transfers because handshake communication is
performed for each data transfer.
On the other hand, FIFO-based interface circuits pro-

posed in [6, 7, 8, 9, 10] can be used for burst transfers
between synchronous and asynchronous circuits. In the
FIFO-based interface circuits, data can be transferred by
writing data to multi-stage storage in sequence. How-
ever, compared with handshake-based interface circuits,
the structure of FIFO-based interface circuits tends to be
complex because the generation of tokens and full/empty
signals is required.
In this paper, we propose an interface circuit for burst

transfers from synchronous to asynchronous circuits. The
proposed interface circuit is based on the handshake-
based interface circuit [5]. The proposed interface circuit
realizes burst transfers in a single handshake cycle by de-
ciding the number of registers from the difference between
cycle times of synchronous and asynchronous circuits and
burst length.
Compared with [5] where multiple handshake cycles are

required for burst transfers, the proposed interface circuit
realizes burst transfers in a single handshake circuit by
deciding the number of registers from the difference be-
tween cycle times of synchronous and asynchronous cir-
cuits and burst length. As a result, the proposed interface
circuit can reduce the data transfer time (i.e., latency).
In addition, compared with FIFO-based interface circuits
[6, 7, 8, 9, 10] where a control circuit for each stage in
the FIFO is required for burst transfers, the proposed in-
terface circuit realizes burst transfers using one control
circuit for multiple registers. As a result, the proposed
interface circuit can reduce the circuit area.
The rest of this paper is organized as follows. Section

II describes asynchronous circuits with bundled-data im-
plementation. Section III describes the handshake-based
interface circuit described in [5]. Section IV describes the
proposed interface circuit for burst transfers. Section V
describes the experimental results. Finally, section VI de-
scribes the conclusion and future work.

II. Asynchronous Circuits with Bundled-data
Implementation

Bundled-data implementation is one of the data encod-
ing schemes in asynchronous circuits. In bundled-data
implementation, N -bit signals are represented by N+2
wires including request req and acknowledgment ack sig-
nals. The timing for writing data to registers is guaran-
teed by delay elements on req and ack.
In bundled-data implementation, control schemes are

divided into four-phase and two-phase handshake proto-
cols. From here, we represent the rising and falling tran-
sitions of a signal as signal+ and signal−. In the four-
phase handshake protocol, four signal transitions (req+,
ack+, req−, and ack+) are used to transfer data. In
the two-phase handshake protocol, two signal transitions
(req+/req− and ack+/ack−) are used to transfer data.
In this work, we use Click Element [11] to control asyn-

chronous circuits. Click Element is one of the control tem-
plates for bundled-data implementation. Click Element is

SASIMI 2024 ProceedingsR4-7

- 293 -



Fig. 1. Asynchronous circuits with bundled-data implementation:
(a) circuit model, (b) timing diagram of ctrli, and
(c) control-paths cpi,p.

implemented as the two-phase handshake protocol.

Figure 1(a) shows the circuit model of bundled-data
implementation used in this work. This circuit model
consists of data-path and control circuits. The data-path
circuit is the same as the one used in synchronous cir-
cuits. The control circuit consists of control modules ctrli
(0≤i≤n-1) corresponding to each pipeline stage stagei.

ctrli consists of a Click Element and delay elements
(sdi and hdi). The Click Element consists of a D Flip-
Flop (DFF) DFFi and a logic for a local clock signal
lclki. sdi and hdi are used to guarantee the setup and
hold constraints of registers regk.

Figure 1(b) shows the timing diagram of ctrli. Blue
and green arrows represent the generation of lclki+ from
reqi+ and acki+1−. ctrli generates lclki+ when reqi+
and acki+1− arrive at the logic for lclki. lclki+ controls
DFFi and regk at the same time. Then, DFFi generates
acki+ to pass the control to ctrli+1. Finally, acki+ arrives
at ctrli−1 to acknowledge that the operation of ctrli is
completed. The behavior of ctrli for reqi− is the same as
the behavior of ctrli for reqi+.

As shown in the timing diagram of ctrli, there are
two control-paths for lclki. From here, we introduce p
(0≤p≤m−1) which represents the identifier of paths. Fig-
ure 1(c) shows the two control-paths cpi,p for lclki. cpi,0
(blue line) represents a forward path from lclki−1 to lclki
through sdi. cpi,1 (green line) represents a backward path
from lclki to lclki through hdi+1.

To evaluate the performance of bundled-data imple-
mentation, we introduce a local cycle time (LCT ) and
an asynchronous cycle time (ACT ). LCTi is the cycle
time of lclki. ACT is the maximum value of LCTi. We
define the maximum delay of cpi,p as tmaxcpi,p . LCT and
ACT can be represented by the following equations.

LCTi = max{tmaxcpi,0
, tmaxcpi,1

} (1)

ACT = max{LCT0, · · · , LCTn−1} (2)

Fig. 2. StoA circuit described in [5]: (a) circuit model and
(b) timing diagram.

III. Interface Circuit from Synchronous to
Asynchronous Circuits

In this paper, we realize burst transfers by extending
the interface circuit described in [5]. Figure 2(a) shows the
interface circuit. The interface circuit is called StoA cir-
cuit because the StoA circuit transfers data from a local
synchronous circuit (LS) to a local synchronous circuit
(LA) using request and acknowledgment signals. Sreq
(Areq) and Sack (Aack) represent request and acknowl-
edgment signals for LS (LA).
The StoA circuit is composed of synchronous and asyn-

chronous interfaces. The synchronous interface is con-
trolled by the four-phase handshake protocol. In contrast,
the asynchronous interface is controlled by the two-phase
handshake protocol.
The synchronous interface is composed of a finite state

machine Sfsm, a register Sreg, a two-flop synchronizer
(A1 and A2), an XOR gate, and a multiplexer. Sfsm
is used to generate req0 for the asynchronous interface.
Sreg is used to receive data (SDATA) from LS. The
two-flop synchronizer is used to synchronize ack0 from the
asynchronous interface. The XOR gate and multiplexer
are used to send Sack to LS.
The asynchronous interface is composed of a register

Areg and ctrl0. Areg is used to send the received data
(ADATA) to LA at the appropriate timing in which the
asynchronous interface receives req0 and Aack. ctrl0 is
used to control Areg at the appropriate timing. Any syn-
chronizer is not used to synchronize req0 because the tim-
ing for writing data to Areg is guaranteed by sd0 and hd0.
Figure 2(b) shows the timing diagram of the StoA cir-

cuit. Blue arrows represent the behavior of the StoA cir-
cuit. The StoA circuit starts its operation when Sreq+
from LS arrives at Sfsm. The synchronous interface
writes SDATA to Sreg using Sreq+. To acknowledge
that SDATA is written to Sreg, Sfsm controls the mul-
tiplexer to generate Sack+. Sfsm also generates req0+
to transfer data from Sreg to Areg. The asynchronous
interface generates lclki+ using req0+ and Aack−. lclki+
controls DFF0 and Areg. Then, DFF0 generates ack0+
and Areq+ to pass the control to LA. ack0+ arrives at

- 294 -



Fig. 3. BStoA circuit: (a) block diagram and (b) timing diagram.

A1 and A2 through hdi to acknowledge that the opera-
tion of the asynchronous interface is completed. Finally,
Sfsm controls the multiplexer to generate Sack− using
the output of A2.

IV. Proposed Interface Circuit from
Synchronous to Asynchornous Circuits

In this paper, we propose an interface circuit for burst
transfers from synchronous to asynchronous circuits. The
proposed interface circuit is based on the StoA circuit
described in Sect. III. To realize burst transfers in a
single handshake cycle, we decide the number of inter-
nal registers from the difference between cycle times of
synchronous and asynchronous circuits and burst length.
We assume that a synchronous cycle time SCT and an
asynchronous cycle time ACT are predetermined and the
burst length is represented by 2n. The proposed interface
circuit for burst transfers is called BStoA circuit.
The BStoA circuit realizes burst transfers in a single

handshake cycle. Figure 3 shows the image of the BStoA
circuit. The BStoA circuit receives 2n data with Sreq+
from LS in continuous cycles. After receiving 2n data,
the BStoA circuit sends Sack+ to LS. The BStoA circuit
also sends the received data with Areq+ or Areq− to LA.
After sending 2n data to LA, the BStoA circuit sends
Sack− to LS to acknowledge that the burst transfer is
completed.

A. The Number of Required Internal Registers

For burst transfers, the BStoA circuit sends data to
LA while receiving 2n data with Sreq+ from LS in con-
tinuous cycles. However, there is a case that data from
Sreg cannot be written to Areg correctly when SCT and
ACT are different. This is because the data of Sreg is
updated during the waiting time for writing the data to
Areg. Figure 4 shows the predicted timing diagrams for
burst transfers.
When SCT is longer than ACT as shown in Fig. 4(a),

the data of Sreg is updated after the data is written to
Areg using req0. The data of Sreg is transferred to Areg
correctly. The latency L for transferring 2n data from LS
to LA can be represented by the following equation.

L = 2n · SCT +ACT (SCT ≥ ACT ) (3)

The latency represents the delay until the BStoA circuit
sends Areq to LA after receiving Sreq. In Fig 4, the
between purple lines represents the latency.

Fig. 4. Predicted timing diagrams for burst transfers:
(a) SCT ≥ ACT and (b) SCT < ACT .

When SCT is shorter than ACT as shown in Fig. 4(b),
the data of Sreg can not be written to Areg because the
waiting time for writing data to Areg is longer than SCT .
As a result, the data of Sreg is updated before the data
is written to Areg. In other words, the transferred data
is lost. Similarly, the next transition of req0 will arrive
at the logic of lclki before/after lclki+ is generated. As a
result, lclki+ will be not generated or lclki+ will change
to lclki− during the control of Areg. This unexpected
signal transition is a hazard for lclki. The latency L for
transferring 2n data from LS to LA and the waiting time
WT for writing data to Areg can be represented by the
following equations.

L = SCT + 2n ·ACT (SCT < ACT ) (4)

WT = L− 2n · SCT (SCT < ACT ) (5)

The waiting time represents the delay until 2n data are
written to Areg after writing 2n data to Sreg. In Fig 4,
the between green lines represents the waiting time.
To transfer data correctly, the BStoA circuit must hold

the data of Sreg until the data is written to Areg. To
satisfy this condition, we prepare several registers Sregk
like a memory. The BStoA circuit can hold the data of
Sregk−1 by writing the next data to Sregk.
The number of Sregk depends on WT because WT

affects the number of times that data of Sregk is updated
before data is written to Areg. We define the number
of Sregk as num r. num r can be represented by the
following equations.

num r =

{
1 (SCT ≥ ACT )

⌈ WT
ACT ⌉ (SCT < ACT )

(6)

No matter how much the difference between SCT and
ACT is large, num r is at most 2n because the burst
length is 2n.
Figure 5 shows the timing diagram for burst transfers

when the number of Sregk is 2 (num r = ⌈ 18
12⌉ = ⌈1.5⌉).

Note that we use the num r-input’s multiplexer between

- 295 -



Fig. 5. Tming diagram for burst transfers when Sregk are used.

Sregk and Areg because data from several Sregk must
be written to Areg alternately. In addition, we need to
fix the signal transition of req0 during burst transfers to
prevent the hazard for lclki.

B. Circuit Models

Figure 6(a) shows the proposed BStoA circuit (SCT ≥
ACT ). To send Sack+ to LS after receiving 2n data, we
add the states of Sfsm. The added states loop until 2n

data are received. To check that 2n data are received, we
insert a counter Scount. Similarly, to send ack0+ to the
synchronous interface after receiving 2n data, we insert a
counter Acount and DFF in the asynchronous interface.
The bit-widths of Scount and Acount increase by log2 n
depending on the burst length.
Figure 6(b) shows the proposed BStoA circuit (SCT <

ACT ). By referring to num r obtained from equation (6),
we insert Sregk in the synchronous interface and insert a
num r-input’s multiplexer in the asynchronous interface.
To prevent the hazard for lclk0, we fix the signal transition
of req0 from Sfsm. The signal transition of req0 changes
only once when Sreq+ arrives at Sfsm. As a result, the
signal transition of lclk0 changes only once. For writing
2n data to Areg, ctrl0 must generate lclk0+ 2n times. To
generate lclk0+ 2n times, we create a new request signal
nreq0 by inserting DFF in the asynchronous interface.
By inserting an XOR gate with req0 and nreq0 as inputs,
ctrl0 generates lclk0+ 2n times.

C. Timing Constraints

To guarantee the operation of the BStoA circuit, it is
necessary to satisfy setup and hold constraints for the in-
ternal registers in the BStoA circuit. The setup and hold
constraints for Sregk can be verified by Static Timing
Analysis (STA) for LS. In this paper, we define the setup
and hold constraints for Areg.
Figure 7 shows the timing paths for the BStoA circuit.

We check the data-paths dpi,p and control-paths cpi,p for
Areg. dpi,p (red line) is a path from the clock signal to

Fig. 6. BStoA circuit: (a) SCT ≥ ACT and (b) SCT < ACT .

Areg through Sregk. There are three types of paths for
cpi,p. cpi,0 (blue line) is a path from the clock signal to
Areg through ctrli. cpi,1 (green line) is a path from lclki
to lclki through LA. cpi,2 (purple line) is a path from
lclki to lclki through sd0 1.
Before the explanation for the timing constraints, we

define variables. We represent the maximum and mini-
mum delays of dpi,p as tmaxdpi,p

and tmindpi,p
. We rep-

resent the maximum and minimum delays of cpi,p as
tmaxcpi,p and tmincpi,p . We represent the setup and hold
times of Areg as tsetupi,p and tholdi,p . We represent the
margins for tmaxdpi,p

and tmaxcpi,p
as tdpmi,p

and tcpmi,p
.

Setup Constraint. The input data for Areg must
be stable before the setup time to write the input data
to Areg. This is called the setup constraint for Areg.
The setup constraint can be represented by the following
inequality.

tmincpi,0 > tmaxdpi,p + tdpmi,p + tsetupi,p (7)

If this setup constraint is violated, we must adjust the
number of cells in sd0 0.

- 296 -



Fig. 7. Data-path dpi,p and control-path cpi,p for BStoA circuit.

When SCT is shorter than ACT , lclk+ is generated by
req0 or nreq0. We also consider the delay of nreq0 which
is used for writing data from the second time onwards to
Areg. Since the data of Sregk is changed at each SCT ,
the delay of nreq0 must be longer than SCT . The delay
of nreq0 must be satisfied by the following inequality.

SCT ≤ tmincpi,2
< ACT (8)

If this constraint is violated, we adjust the number of cells
in sd0 1. Since the generation timing of lclk+ depends on
tmaxcpi,p , we do not need to adjust the number of cells in
sd0 1 if tmincpi,1

is longer than SCT .
Hold Constraint. The data must be stable for the

hold time after the input data are written to Areg. This
is called the hold constraint for Areg. The hold constraint
can be represented by the following inequality.

tmindpi,p
+SCT ·num r > tmaxcpi,0

+thcpmi,p
+tholdi,p

(9)

If this hold constraint is violated, we must adjust the num-
ber of cells in hd0. Note that the hold violations rarely
occur because we decide the number of Sregk to write
data to Areg correctly when SCT is shorter than ACT .

V. Experimental Results

In the experiment, we compare the proposed BStoA
circuit with a FIFO-based interface circuit represented in
[10] in terms of latency, circuit area, dynamic power con-
sumption, and energy consumption. We selected [10] for
the comparison because the FIFO-based interface circuit
in [10] is synthesizable using standard libraries without
specific libraries for asynchronous circuits. In addition,
[10] addressed many interface circuits as related work.
Note that the latency represents the delay until the inter-
face circuits send the request signal to the receiver after
receiving the request signal from the sender.
First, we prepared the Verilog HDL of the BStoA cir-

cuit. To check the quality of the BStoA circuit when
the cycle time and burst length change, we set the burst
lengths to 8, 16, and 32, SCT to 15 ns, and ACT to 13
ns and 17 ns. By referring to the burst length, SCT , and

Fig. 8. FIFO-based interface circuit in [10].

ACT , we calculated the number of Sregk using equation
(6).
Then, we synthesized the BStoA circuit using Quar-

tus Prime 20.1 by referring to the design flow of interface
circuits for commercial Field Programmable Gate Arrays
(FPGAs) in [12]. The target device was EP4CE115F29C7
(Cyclone IV E). For the synchronous interface, we used
the clock constraints to satisfy SCT . For the asyn-
chronous interface, we used the maximum delay con-
straints for control-paths and local clock constraints for
lclki to satisfy ACT . In addition, we used Design Par-
titions and LogicLocks for the interfaces to reduce the
number of delay adjustments by fixing the placement of
them.
To verify the functional correctness of the BStoA cir-

cuit, we performed a gate-level (GL) simulation using
ModelSim-Intel FPGA Edition 2020.1. We prepared test
patterns for the simulation by giving arbitrary values. Af-
ter the simulation, we confirmed that all output data of
the BStoA circuit were the same as the input data. In
addition, we confirmed that the BStoA circuit realized
burst transfers in a single handshake cycle.
We designed the FIFO-based interface circuit in

[10]. Figure 8 shows the FIFO-based interface circuit.
The FIFO-based interface circuit receives DATA with
req put+. If the FIFO storage is full, space− is gener-
ated. When the data of the FIFO-based interface circuit
are read by req get+, ack get+ is generated. To make
a fair comparison between the BStoA circuit and FIFO-
based interface circuit, we decided the number of FIFO
stages by referring to num r. To realize burst transfers,
we decided that the number of the stages in the FIFO
was num r+ 2 because the signal indicating whether the
FIFO is full or not was delayed two cycles by the two-flop
synchronizer.
Figure 9(a) shows the latency of the BStoA circuit.

The latency was obtained from the GL simulation using
ModelSim. Compared with the FIFO-based interface cir-
cuit, the BStoA circuit did not have a significant impact
on the latency because the latencies of the BStoA circuit
and the FIFO-based interface circuit depend on the slower
value of SCT and ACT .
Figure 9(b) shows the number of Logic Elements (LEs)

of the BStoA circuit. The number of LEs was ob-

- 297 -



Fig. 9. Evaluation resualts: (a) latency, (b) number of LEs, (c)
dynamic power consumption, and (d) energy consumpion.

tained from the synthesis report generated by Quartus
Prime. Compared with the FIFO-based interface circuit,
the number of LEs in the BStoA circuit was reduced in all
cases. This is because the number of Sregk was smaller
than the number of stages in the FIFO. In addition, one
control circuit was required for several Sregk, but control
circuits were required for each stage in the FIFO.
Figure 9(c) shows the dynamic power consumption of

the BStoA circuit. The dynamic power consumption was
obtained by PowerPlay Power Analyzer with the value
change dump file generated by ModelSim during GL sim-
ulation. Compared with the FIFO-based interface circuit,
the dynamic power consumption of the BStoA circuit was
reduced in all cases because of the reduction of the num-
ber of LEs.
Figure 9(d) shows the energy consumption of the

BStoA circuit. The energy consumption was the prod-
uct of the latency and the dynamic power consumption.
Compared with the FIFO-based interface circuit, the en-
ergy consumption of the BStoA circuit was reduced in
all cases because of the reduction of the dynamic power
consumption.
Compared with the FIFO-based interface circuit, the

proposed interface circuits could reduce energy consump-
tion by at least 9.7% because of the reduction of the circuit
area and dynamic power consumption. The number of
Sregk is smaller than the number of stages in the FIFO.
Moreover, the proposed BStoA circuit uses one control

circuit for Sregk while the FIFO-based interface circuit
uses a control circuit for each stage in the FIFO.

VI. Conclusion

In this paper, we proposed an interface circuit for burst
transfers from synchronous to asynchronous circuits. The
proposed interface circuit realized burst transfers in a sin-
gle handshake cycle by deciding the number of registers
from the difference between cycle times of synchronous
and asynchronous circuits and burst length. In the exper-
iment, the proposed interface circuit could reduce energy
consumption by at least 9.7% compared with a FIFO-
based interface circuit. In our future work, we are go-
ing to design an interface circuit for burst transfers from
asynchronous to synchronous circuits. In addition, we are
going to extend the interface circuit to deal with standard
interfaces such as AXI.

Acknowledgements

This work is partially supported by Grant-in-Aid for
Scientific Research from Japan Society for the promotion
of science (#21K11812 and #23K16860) .

References

[1] D. M. Chapiro, ”Globally-Asynchronous Locally-Synchronous
Systems,” Dept. of Computer Science, Stanford Univ., 1984.

[2] A. E. Sjogren and C. J. Myers, ”Interfacing Synchronous and
Asynchronous Modules Within a High-Speed Pipeline,” Proc.
7th Conference on Advanced Research in VLSI, pp. 47–61, 1997.

[3] J. Kessels, ”Register-Communication between Mutually Asyn-
chronous Domains,” Proc. ASYNC, pp. 66–75, 2005.

[4] D. L. Oliveira, et al, ”A Synchronous Wrapper for High-Speed
Heterogeneous Systems on FPGAs,” 2016 IEEE ANDESCON,
pp. 1–4, 2016.

[5] S. Semba and H. Saito,“A Study on the Design of Interface Cir-
cuits Between Synchronous-Asynchronous Modules Using Click
Elements,”Proc. SASIMI 2022, pp. 139–144, October, 2022.

[6] E. Beigne and P. Vivet, ”Design of On-chip and Off-chip Inter-
faces for a GALS NoC Architecture,” Proc. ASYNC, pp. 172–
183, 2006.

[7] T. Chelcea and S. M. Nowick, ”Robust Interfaces for Mixed-
Timing Systems,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 12, no. 8, pp. 857–873, 2004.

[8] T. Ono and M. Greenstreet, ”A Modular Synchronizing
FIFO for NoCs,” 3rd ACM/IEEE International Symposium on
Networks-on-Chip, pp. 224–233, 2009.

[9] F. Huemer and A. Steininger, ”Timing Domain Crossing using
Muller Pipelines,” Proc. ASYNC, pp. 44–53, 2020.

[10] M. S. Abdelhadi, ”Synthesizable Synchronization FIFOs Utiliz-
ing the Asynchronous Pulse-Based Handshake Protocol,” IEEE
NorCAS, pp. 1–7, 2020.

[11] A. Peeters, et al, ”Click Elements: An Implementation Style
for Data-Driven Compilation,” Proc. ASYNC, pp. 3–14, 2010.

[12] S. Semba and H. Saito, ”A Design Support Tool Set for In-
terface Circuits Between Synchronous and Asynchronous Mod-
ules,” in IEEE Access, vol. 11, pp. 13408–13420, 2023.

- 298 -


