
A Novel Task Deployment Framework for Heterogeneous Multicore
Systems Considering Circuit Aging

1Yu-Guang Chen, 2Ing-Chao Lin, 2Yu-Lin Chen, 2Yi-Ping Chen
1Departmrnt of Electrical Engineering, National Central University, Taoyuan, Taiwan

2Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan

andyygchen@ee.ncu.edu.tw

Abstract
Heterogeneous multicore systems are widely used nowadays to achieve a better trade-off

between computing performance and power consumption. ARM big.LITTLE architecture is

such an example which consists of high-performance big cores and low-power LITTLE cores

to provide execution flexibility. On the other hand, the aging effect becomes a non-negligible

threat in advanced CMOS technology. One of the most severe aging effects is NBTI, which can

cause timing violations or even system failure. Previous studies proposed various techniques to

mitigate the impact of NBTI. Most of them, however, only target on homogeneous multicore

systems and are not directly applicable to heterogeneous multicore systems. Furthermore, none

of these techniques consider real-time applications, where a task may be subject to a tight timing

constraint even after circuit aging. Therefore, this paper investigates the characteristics of

heterogeneous multicore systems and proposes an aging-aware framework to improve the

system lifetime. In particular, it proposes using the asymmetric aging concept that keeps a few

cores robust to address the critical tasks at later life stages and the task migration technique that

executes a single task with different types of cores to provide a better trade-off between energy

consumption and system lifetime. Experimental results show that the proposed framework can

achieve 5.29x to 10.78x lifetime improvement and 11.8% to 23.8% average power consumption

saving.

Keyword: Heterogeneous multicore system, NBTI effects, System lifetime,

Asymmetric aging

1 Introduction

Homogenous multicore systems have been widely adopted in real-time

computer systems nowadays to perform high-performance computing at

the cost of vast power consumption. To achieve a better trade-off between

performance and energy consumption, previous studies have proposed

various approaches [1][2][3]. However, even though these techniques can

partially reduce the huge power consumption, the identical computation

units (cores) still form a barrier to future power saving. Therefore,

heterogeneous multicore systems have been proposed. With the

availability of various types of cores, including Central Process Units

(CPU) and specific purpose accelerators, a heterogeneous multicore

system can satisfy different performance requirements while keeping

power consumption within specified limits. An example of this is the ARM

big.LITTLE architecture comprises powerful big cores and power-

efficient LITTLE cores, as shown in Figure 1[11]. The big cores achieve

high performance but consume significant power, while the LITTLE cores

provide power-efficient computation at the cost of performance loss. By

deploying applications to appropriate cores, the system can satisfy the

performance requirement while meeting power consumption constraints.

On the other hand, as transistor size shrinks, reliability becomes a non-

negligible threat. One of the major reliability issues is Negative-Bias

Temperature Instability (NBTI), which is caused by the instability of the

Si-H bond. The dissociation of Si-H bonds along the silicon-oxide

interface leads to the generation of interface traps, resulting in an increase

in threshold voltage (Vth) in absolute value as well as the transition delay

of transistors. In the long term, NBTI may cause timing violations and

even system failures.

To mitigate the impact of the NBTI, many researchers have proposed

different approaches to address this threat. The authors of [1][2][3]

proposed different task-to-core mapping algorithms on the homogenous

multicore system. The key idea is to distribute the workload evenly among

all cores (symmetric aging), thereby mitigating the aging rate of each core

can be reduced. However, these approaches are not applicable to

heterogeneous multicore systems since they do not consider the

heterogeneity of cores. The approaches proposed in [8][9][10] focus on

extending the lifetime of heterogeneous multicore systems, especially the

ARM big.LITTLE architecture.

Big
core 0

Big
core 1

Big
core 2

Big
core 3

Little
core 0

Little
core 1

Little
core 2

Little
core 3

L2 Cache L2 Cache

Shared L3 Cache

Main Memory

Figure 1. ARM big.LITTLE architecture [11]

Although the previous approaches cleave a path to construct reliable

heterogeneous multicore systems, they predominantly rely on the concept

of symmetric aging. As detailed in session 2.3, we find that the symmetric

aging-based approaches may fail to obtain a better system lifetime with the

presence of critical tasks in real-time applications. Here, we define a

system that ends its lifetime if a given task cannot be completed within its

timing constraints by any core in the system. In contrast, we propose

asymmetric aging-based approaches, which keep a few robust cores and

use them to execute critical tasks after circuit aging. However, applying

asymmetric aging to heterogeneous multicore systems is not

straightforward due to the variety of cores. Therefore, we propose a novel

aging-aware task deployment framework on ARM big.LITTLE

architecture [11] for real-time applications. It is worth noting that this

proposed framework can also be extended to other heterogeneous

multicore systems with minor adjustments.

In this paper, we carefully examine the characteristics of the big core

and the LITTLE core in the architecture and employ different aging

tolerance strategies for different types of cores. Specifically, we adopt an

asymmetric aging-based approach in the big cluster (i.e., a set of big cores)

to reserve an appropriate number of robust big cores for critical tasks that

appear at a later life stage. Meanwhile, we adopt a symmetric aging-based

approach in the LITTLE cluster (i.e., a set of LITTLE cores) to maximize

the utilization of LITTLE cores for power-saving purposes. Moreover, in

this framework, we adapt the task migration technique [5][9], which

allows a single task to be executed by both big clusters and LITTLE

clusters in serial order. With this flexibility, we can either obtain even

better lifetime extension by further exploiting big cores or save more

power by applying a portion of the task to a LITTLE core. Our framework

includes task preprocessing, task scheduling, execution scenario

classification/migration decision, and task-to-core assignment.

The contributions of this work are listed as follows:

• This work is the first to apply different aging tolerance strategies to

heterogeneous multi-core systems. We employ an asymmetric aging-

based approach laterto the big cluster, reserving an appropriate number

of robust big cores at the early life stage. These cores can be used to

execute critical tasks at later life stages. On the other hand, we apply

the symmetric aging approach to the LITTLE cluster to maximize the

utilization of LITTLE cores and save power consumption.

SASIMI 2024 ProceedingsR1-1

- 2 -

• We propose a task migration mechanism that can either obtain even

better lifetime extension by further exploiting big cores or save more

power by allocating a portion of the task to a LITTLE core.

• Experimental results demonstrate that our framework can achieve a

5.29x to 10.78x system lifetime extension and a 13.6% to 31.5%

average power reduction compared to the symmetric aging-based

wearout-aware approach.

The rest of the paper is organized as follows: Section 2 gives a brief

introduction. Section 3 illustrates the task and heterogenous multicore

system models used in this work and formally formulates the problem.

Section 4 details the proposed framework. Section 5 presents the results,

and Section 6 concludes the paper.

2 Preliminaries

This section first reviews heterogeneous multicore systems, with a

focus on the ARM big.LITTLE architecture. After that, it discusses details

about the NBTI model and various NBTI tolerance/mitigation techniques

for multicore systems. Finally, it derives the differences between the

symmetric aging approach and the asymmetric aging approach, using an

example..

2.1 Heterogeneous Multicore System

Heterogeneous multicore systems are widely used to execute various

applications in computer systems, achieving a better trade-off between

performance and power consumption. Conventionally, some cores in the

system can provide excellent performance at the cost of significant power

consumption to address real-time applications, while others can operate at

lower voltage/frequency to save power. By analyzing the characteristics of

tasks and appropriately mapping them to different types of cores, the

system can exploit the most appropriate resources to meet performance

requirements and save power simultaneously.

One of the widely used heterogeneous multicore systems is the ARM

big.LITTLE architecture [11]. It comprises several cores of different types

(big or LITTLE) with a single instruction set architecture (ISA). Figure 1

shows an example of the big.LITTLE architecture, where four big cores

form a big cluster (left portion of the figure) and four LITTLE cores form

a LITTLE cluster (right portion of the figure). The big cores can provide

strong calculation speed, while the LITTLE cores can perform low-power

operations. Each core has its L1 cache; cores in the same cluster share the

L2 cache, and all cores share the L3 cache. This architecture facilitates the

convenient swapping of a task between cores during task execution.

The key to perfectly exploiting the performance-power trade-off of

heterogeneous multicore systems relies on efficient task management

policies. The authors of [5] proposed a Performance Impact Estimation

(PIE) model to predict the performance variation of a workload on

different core types by collecting CPI stack, MLP, and ILP profile

information. It can predict which task-to-core mapping is likely to provide

the best performance. The authors of [6] proposed a software-based

modeling technique that can estimate the performance and power

consumption of workloads for different core types. The method proposed

in [7] can predict changes in the energy consumption of a program when

moving from one core type to another. However, none of the above

approaches take the aging effect into consideration.

2.2 NBTI Model and Prior Works

To simulate the NBTI effect properly, in this work, we apply the fitting

model proposed in [12]. The model calculates the ΔVth with the following

equation

∆𝑉𝑡ℎ = 𝐴 ∙ 𝑉𝐺
Γ ∙ exp⁡(

−𝐸𝑎

𝑘𝑇
)𝑡𝑛 ∙ 𝑃𝐷𝐶𝛼 ()

where A is a technology-spcific constant, VG is gate voltage; Γ is the

power-law voltage acceleration fator; k is the Boltzmann constant; Ea is

the Arrhenius T activation energy; T is the temperature in kelvin, and t is

the time in second; n is the power-law time exponent; PDC is the pluse

duty cycle; α is the power-law duty exponent. We set the VG to 1.0V for

the big cluster and 0.8V for the LITTLE cluster in our experiment.

To mitigate the impact of NBTI on a multicore system, serval

approaches have been proposed. These approaches can be classified into

design time and runtime approaches. The design-time approaches add

extra timing margin as guardband to tolerance NBTI. However, these

methods may lead to overdesign which causes unnecessary power

consumption. The runtime approaches monitor the system and

dynamically adjust the operation scenarios (for example, task-to-core

mapping, operating voltage, etc.) during circuit operation. The authors

[1][2][3] proposed different techniques to monitor the various operating

conditions as well as task-to-core mapping algorithms to appropriately

assign tasks to cores to mitigate NBTI. However, all the above methods

only concentrate on homogeneous multicore system and are hard to adapt

to heterogeneous multicore systems since the performance and power

efficiency benefits of different type of cores is not considered. Therefore,

the approaches for the heterogeneous multicore system has emerged.

The authors of [8] proposed a lifetime reliability model based on

Amdahl’s Law, which analyzes core utilization, processor composition,

and thread scheduling method for the heterogeneous multicore system.

The study of [8] revealed that the number of big cores will influence the

reliability of the system, and proposed a method to find an appropriate

number of big cores in the system. The authors of [9] proposed an aging-

aware task mapping algorithm that can replace the load balancing

mechanisms in Linux-like runtime systems and cooperate with other

components. It performs online characterization and run-time mapping of

tasks to find energy-efficient mappings and meet performance

requirements while reducing platform aging. The authors of [10] propose

the Dynamic Reliability Management (DRM) framework that integrates

resource management policies for the heterogeneous multicore system.

The framework can trade-off between different metrics such as system

lifetime, performance, and power consumption.

Although the above methods can successfully analyze or mitigate

NBTI on heterogeneous multicore systems, they do not take real-time

applications which includes critical tasks with pretty tight deadline

constraints into consideration. These approaches try to make the aging rate

of each core consistent, either big cores or LITTLE cores. This results in

an insufficient number of robust cores in the later life stage and system

failure will occur if none of the cores can complete the critical tasks.

Therefore, we propose an aging-aware task deployment framework that

adopts different aging tolerance strategies on different core types. Our

proposed framework considers the criticality of tasks and selects the

appropriate cores according to the attributes of the task to prolong the

system lifetime and minimize the power consumption.

2.3 Symmetric Aging vs. Asymmetric Aging

Here we use an example to illustrate why an asymmetric aging

approach can benefit system lifetime with the presence of critical tasks.

Assume a multi-core system with 4 cores from 0 to 3. The multicore

system is used to execute a real-time application with a group of tasks. To

simplify the complexity, we assume all tasks can be executed by all cores.

Figure 2 shows the execution time for a given critical task with different

cores after circuit aging where the x-axis shows different cores and the y-

axis gives the execution time. Figure 2(a) depicts the result from the

symmetric aging approach while Figure 2(b) shows the result from the

asymmetric aging approach. From the figure, we can find that since all

cores age at a similar speed, none of the core can execute the given critical

task within its deadline. On the other hand, with the asymmetric aging

approach, core 3 is reserved at the early life stage and can finish the critical

task before its deadline. Therefore, the asymmetric aging approach can

successfully extend the system lifetime. However, an efficient and

- 3 -

effective framework to integrate the concept of asymmetric aging to a

heterogeneous multicore system is still in demand.

0 1 2 3 core

ti
m

e

deadline

 0 1 2 3 core

ti
m

e

deadline

(a) Task execution on each core

with symmetric aging

(b) Task execution on each core with asymmetric

aging (core 3 is reserved in the early life stage, and

used to executed critical tasks in the later life stage)

Figure 2. Symmetric aging vs. asymmetric aging

3 Problem Formulation

This section first describes the heterogenous multicore system model

and the real-time task model use in this paper. After that, we formally

formulate the reliability aware task deployment problem for a

heterogeneous multicore system.

3.1 Heterogeneous Multicore System Model and Real-time

Task Model

We first detail the heterogeneous multi-core system model used in this

paper. The model is adopted from the ARM big.LITTLE architecture [11],

which contains two types of clusters, a big cluster, and a LITTLE cluster.

The big cluster (BC) contains a set of big cores and the LITTLE cluster

(LC) contains a set of LITTLE cores. The instruction set architecture of

each core types are identical, thus, the tasks can be executed on any core.

Besides, we assume that the tasks can be switched between different

clusters to meet a given constraint.

We assume that the system continues executing a set of periodic tasks,

which are expressed in the form of a Directed Acyclic Graph (DAG), G =

(T, E). Vertices set T = {t0, t1 ..., tn-1 } represents n tasks and edges set E =

{ eij } (i < j < n) represents the dependency of tasks. The existence of edge

eij means that task tj cannot start its execution until task ti is completed.

Based on the characteristics of tasks, we classify tasks into two categories,

the big tasks, and the LITTLE tasks. A task is classified as a LITTLE task

if it can successfully be completed within the deadline by a core in the

LITTLE cluster. Otherwise, the task is classified as a big task. To meet

the timing constraint, a LITTLE task can be assigned to either a big core

or a LITTLE core, but a big task can only be executed by a big core.

Following we introduce some terms as well as equations that will be

used in our algorithm, which includes the execution time, the ready time,

the slack, the waiting time, the remaining time, and the criticality of a task.

The execution time of task ti on core k is estimated using Equation (2)

 ETk (ti) = N (ti)． CTk (2)

where N (ti) is the number of clock cycles needed of task ti, CTk is the clock

cycle time of core k. Each task ti has a hard deadline d(ti) and we use RdyTk

(ti) to represent the ready time for task ti to be executed by core k as

RdyTk (ti) = max (RdyTk , Rdy(ti)) (3)

where RdyTk represents the ready time of core k (i.e., core k finishes its

job and is available for executing task ti) and Rdy(ti) shows the ready time

of task ti. Therefore, the slack of task ti on core k can be estimated using

Equation (4).

 Slackk (ti) = d (ti) – (RdyTk (ti) + ETk (ti)) (4)

where RdyTk (ti) + ETk (ti) indicates the completion time of task ti. Note

that to avoid timing violation and system failure, the slack should be larger

or equal to 0.

 We use criticality to reflect the flexibility of executing a task. The

criticality of task tj is defined as the legal execution duration divides by its

minimum execution time, as shown in Equation (5)

 C (tj) =
⁡𝑑⁡(𝑡𝑖)⁡–⁡𝑚𝑎𝑥_𝑑⁡(𝑡𝑖)

𝑚𝑖𝑛_𝐸𝑇𝑘⁡(𝑡𝑗)
 ∀i if ei,j exists, ∀k (5)

where d (tj) is the deadline of task tj, max_d (ti) is the maximum deadline

of all of the tasks ti with ei,j exists (i.e., the predecessors of vertex tj in the

DAG), and min_ETk (tj) is the minimum execution time of task tj (with the

most robust core). The smaller the C (tj) is, the higher criticality of this

task has. Higher criticality implies the task must be executed with

relatively more robust cores.

The waiting time of task ti on core k can be calculated as

 WTk (ti) = {
0, if⁡𝑅𝑑𝑦𝑇𝑘⁡(𝑡𝑖) ⁡< ⁡𝑅𝑑𝑦𝑇𝑘 ⁡

𝑅𝑑𝑦𝑇𝑘 ⁡(𝑡𝑖) −⁡𝑅𝑑𝑦𝑇𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

Note that WTk (ti) is greater than 0 only when task ti is ready to be executed

before the core k is available.

3.2 Aging-Aware Task Deployment Problem

The goal of the aging-aware task deployment problem is to exploit the

advantages of the different core types in the heterogeneous multicore

system and adopt appropriate aging tolerance strategies to different types

of cores. The task-to-core assignment algorithm will be developed based

on these strategies such that the lifetime of the system can be extended and

energy consumption can be minimized. Again, the system lifetime is

defined as the first time when a timing failure occurs.

Figure 3 shows the problem formulation in this work. Given the big

cluster BC, the LITTLE cluster LC, the task graph TG with periodic tasks,

and the deadline set D with deadlines of each task, we want to find an

appropriate task execution sequence as well as task-to-core mapping which

can lead to the longest system lifetime with minimal power consumption.

Inputs: (1) big cluster BC with big cores (2) LITTLE cluster LC with LITTLE cores

(3) task graph TG with periodic tasks (4) deadline set D

Output: The appropriate task-to-core assignment

Objective: Extend the system lifetime and minimize the power consumption

Figure 3. problem formulation

4 Aging-Aware Task Deployment Framework

This section first presents the concept and the overall flow of the

framework. Then, this section details each stage in the framework.

4.1 Framework Overview

To realize the above objective, we propose different aging tolerance

strategies for the big cluster and the LITTLE cluster. For the big cluster,

we propose using an asymmetric aging approach to reserve an appropriate

number of big cores in the early life stage. These reserved big cores can be

used to execute critical tasks after all the other cores are aged so the

deadline of the task can be met. The lifetime of the system then can be

extended. On the other hand, we propose using symmetric aging on the

LITTLE cluster so the LITTLE cores can be sufficiently used and the

power consumption can be minimized. Note that even all LITTLE cores

are aged, a critical LITTLE task can still be executed by a big core with

the cost of extra power consumption. Therefore, the timing failure will not

occur.

Furthermore, we propose task migration techniques to execute a task

with both a big core and a LITTLE core. When a big task with large slack

pops up, we can firstly execute the task with a LITTLE core and then

migrate it to a big core. With sufficient slack, the task still can be

completed before its deadline with less power consumption. On the other

hand, when no LITTLE core can complete a LITTLE task within the

deadline, the LITTLE task can be migrated to a big core. With more

powerful computation ability, the LITTLE task can be completed within

the deadline. To realize the above idea, we propose an NBTI-aware task

scheduling framework as shown in Figure 4.

- 4 -

Task Preprocessing

Task Scheduling

Execution Scenario
Classification &

Migration Decision

Execution

Update NBTI
Degradation

Task Queue TQ

Next Iteration

Offline phase

Online phase

Task-to-core Assignment

Big
Cluster

Little
Cluster

Task
Graph

Deadline
Set

Figure 4. The flowchart of the proposed framework

Two phases exists in our framework: the offline phase and the online

phase. The offline phase estimates the execution time of each task and

classifies it into big tasks or LITTLE tasks. In the online phase, these tasks

are continuously executed in the system through four stages: task

scheduling, execution scenario classification and migration decision, task-

to-core assignment, and task execution. The NBTI degradation of each

core is updated for the next iteration. The following sub-sections details

each stage.

4.2 Task Preprocessing

The first step of our framework is to classify tasks to either big tasks

or small tasks. We use equation (2) to estimate the execution time of a task

on all cores. If a task cannot be completed before its deadline with any of

the LITTLE core, we classify it as a big task. This implies that the

computational requirement of the task is too large to execute on a LITTLE

core; therefore, a high-performance big core is required. On the contrary,

if a task can be executed on a LITTLE core and meet its deadline, the task

is marked as a LITTLE task. Therefore, the task can be executed on a

power-efficient LITTLE core to save power consumption.

4.3 Task Scheduling

After preprocessing the tasks, we need to schedule the tasks and find

an appropriate execution order. By the sequence of the tasks and the

dependency in the task graph, we map each task which is ready to execute

to a core one at a time. However, there may be a scenario that the number

of available cores is fewer than the ready tasks. The situation that no core

can execute these ready tasks can result in deadline violation. If the

executing order is inappropriate, the lifetime of the system may be

shortened substantially. To deal with this problem, we implement a task

queue and push all ready tasks into it. Then these tasks are sorted by their

deadline in increasing order, and the task with the smallest deadline in the

task queue will have the highest order for task-to-core assignment. With

this policy, we provide more flexibility to the task with a pretty tight

deadline to avoid timing failure to occur.

4.4 Execution Scenario Classification and Migration

Decision

The task scheduling stage will pick a ready task, and the next step is to

find the appropriate core to execute it. Based on the classification result in

task preprocessing and current system loading, our method will classify

the execution scenario into four different situations. In the meantime, our

method will identify whether migration will benefit from executing the

task. The proposed algorithm is shown in Algorithm 1.

In our algorithm, we first identify the task type (line 1). If the selected

task, ti, is a big task but none core in the big cluster is available at this

moment, we will check the availability of the LITTLE cluster (line 2). If

at least one core is available at the LITTLE cluster, we will evaluate the

possibility to execute the task with LC first and then migrate to BC (line 3,

will be detailed in section 4.6.1/algorithm 6). Otherwise, task ti will be

assigned to the big cluster (line 5, will be detailed in 4.5.1/algorithm 4).

On the other hand, if the task is a LITTLE task, then the slack of the task

ti is estimated in the LITTLE cluster (line 8). If task ti is unable to finish

within deadline on any LITTLE core (line 9), then task ti will be migrated

to the big cluster to speed up its execution (line 10, detail in 4.6.2/algorithm

7). Otherwise, task ti is assigned to LC (line 12, detail in 4.5.2/algorithm

5).

Algorithm 1. Execution Scenario Classification and Migration Decision

Input: (1) task ti and its type (isBig) in task queue (2) big cluster BC

with big cores (3) LITTLE cluster LC with LITTLE cores

Output: The task to core mapping or migration for task ti

1: if isBig(ti) then

2: if all big cores are executing tasks && at least a LITTLE core is free then

3: Evaluate the possibility to execute task ti at LC and then

4: migrate it from LC to BC; /* Algorithm 6*/

5: else

6: Assign task ti to BC; /* Algorithm 4 */

7: end if

8: else

9: Estimate the slack of task ti in LC;

10: if task ti is unable to finish within the deadline in LC then

11: Migrate task ti to BC; /* Algorithm 7 */

12: else

13: Assign task ti to LC; /* Algorithm 5 */

14: end if

15: end if

4.5 Task-to-core Assignment

This subsection introduces the task-to-core assignment algorithm

which includes task-to-big-core and task-to-LITTLE-core assignment.

4.5.1 Task-to-big-core Assignment

In this stage, we need to find an appropriate big core to execute the big

task. We propose using the asymmetric aging approach in this stage. The

key concept of asymmetric aging is to keep a few numbers of robust cores

idle unless necessary in the early life stage of the system. After the system

runs for a long time, all non-reserved cores will suffer from NBTI

degradation and are unable to complete the critical tasks in the later life

stage. These reserved cores now are used to execute critical tasks. Since

they are all still robust, the deadline for the critical tasks can be met and

the lifetime of the system is prolonged. However, doing so may decrease

the number of available big cores at the early life stage and the big tasks

may not able to be completed on time. Therefore, an efficient method is

needed to decide when to use the reserved cores.

If the task is non-critical, we can select a relatively weak core to

execute it. Otherwise, if the task is critical, we need to select a relatively

robust core to execute the task. We use equation (7) and equation (8) to

represent the ratio of robustness and weak.

 𝐶𝑜𝑠𝑡𝑟𝑜𝑏𝑢𝑠𝑡 ⁡=
𝑉𝑡ℎ(𝑘)−𝑚𝑖𝑛𝑉𝑡ℎ

𝑚𝑖𝑛𝑉𝑡ℎ
 (7)

𝐶𝑜𝑠𝑡𝑤𝑒𝑎𝑘 =
𝑚𝑎𝑥𝑉𝑡ℎ−𝑉𝑡ℎ(𝑘)

𝑚𝑎𝑥𝑉𝑡ℎ
 (8)

The smaller Costrobust means that the core is relatively robust in the system

since its Vth value is smaller. The smaller Costweak means the core is

relatively weak in the system since its Vth value is larger. We then adopt

the weighted comprehensive criterion method (WCCM) [20] to merge the

two equations into a single cost function to evaluate the cost of selecting

core b as

𝑐𝑜𝑠𝑡(𝑏) = 𝑃 × 𝐶𝑜𝑠𝑡𝑟𝑜𝑏𝑢𝑠𝑡 + (1 − 𝑃) × 𝐶𝑜𝑠𝑡𝑤𝑒𝑎𝑘. (9)

Coefficient P is the weight of Costrobust, where P is from zero to one. The

complement of P, (1 - P), is the weight of Costweak. We use this coefficient

to control whether the selected core is relatively robust or relatively weak.

Suppose we want to choose a relatively robust core, we need to set a larger

P. Conversely, we can set a smaller P to select a relatively weak core. The

- 5 -

equation to obtain P is shown in equation (10). The Vth value of each core

with non-negative slack will be recorded in a set, vth_set, and the size of

vth_set represents the number of cores that can successfully execute this

task.

𝑃 =
#⁡𝑏𝑖𝑔⁡𝑐𝑜𝑟𝑒−𝑠𝑖𝑧𝑒⁡𝑜𝑓⁡𝑉𝑡ℎ_𝑠𝑒𝑡

#⁡𝑏𝑖𝑔⁡𝑐𝑜𝑟𝑒
 (10)

Consider two extreme situations: If the size of the vth_set is equal to the

number of big cores, then P is zero. This means many cores can

successfully execute this task, and this task is less critical. Thus, Costweak

will dominate the cost function. Otherwise, if the size of the vth_set is zero,

then P is 1. This implies the task is critical. Thus, Costrobust will dominate

the cost function. Algorithm 2 summarizes the task to big core assignment

algorithm.

Algorithm 2. Task-to-big-core Assignment

Input: (1) big task ti and its deadline time d(ti) , ready time RdyTb (ti)

(2) big cluster BC with big cores

Output: cand_b: The candidate big core with minimum cost

1: initialize P;

2: initialize threshold voltage set vth_set;

3: for each core b in BC do

4: ETb (ti) = Execution time of task ti on core b;

5: slackb (ti) = d(ti) – RdyTb (ti) – ETb (ti);

6: if slackb (ti) > 0 then

7: record the Vth of core b in vth_set;

8: end if

9: end for

10: P =
#⁡𝑏𝑖𝑔⁡𝑐𝑜𝑟𝑒⁡−⁡𝑠𝑖𝑧𝑒⁡𝑜𝑓⁡𝑣𝑡ℎ_𝑠𝑒𝑡

#⁡𝑏𝑖𝑔⁡𝑐𝑜𝑟𝑒
;

11: for each core b where its Vth is in vth_set do

12: 𝑐𝑜𝑠𝑡(𝑏) = 𝑃 × 𝐶𝑜𝑠𝑡𝑟𝑜𝑏𝑢𝑠𝑡 + (1 − 𝑃) × 𝐶𝑜𝑠𝑡𝑤𝑒𝑎𝑘;

13: end for

14: return cand_b = the core b with the minimum cost;

4.5.2 Task-to-LITTLE-core Assignment

This algorithm selects a LITTLE core in the LITTLE cluster to execute

LITTLE task ti. We use the symmetric aging approach to deal with this

problem. There are two reasons for using symmetric aging instead of

asymmetric aging. First, we have reserved big cores in the big cluster, and

these reserved big cores can execute both the big tasks and LITTLE tasks;

therefore, it is not necessary to reserve LITTLE cores. Second, since some

big tasks may migrate to the LITTLE cluster, we should always keep the

larger availability of LITTLE cores. To achieve symmetric aging in the

LITTLE cluster, we use the cost function in equation (11) to determine the

robustness of a LITTLE core:

𝑐𝑜𝑠𝑡(𝑙) =
𝑉𝑡ℎ(𝑙)−𝑚𝑖𝑛𝑉𝑡ℎ

𝑚𝑖𝑛𝑉𝑡ℎ
 (11)

The smaller cost(l) of core l is, the more robust it is. Then, we execute the

task by selecting the most robust core at all times.

4.6 Task Migration

This section details the task migration mechanism including migrating

big task to the LITTLE cluster and migrating the LITTLE task to the big

cluster.

4.6.1 Migrate a big task to LITTLE cluster

In this sub-section, we detail how to evaluate the possibility to execute

a big task with LC first and then migrate to BC with the lack of available

big cores. The propose of doing so is to shorten the completion time of the

big task so the probability of timing violation to occur can be minimized

and the system lifetime can be extended.

Figure 5 shows the flow of the estimation procedure. The waiting time

of big task ti is first estimated on each big core by equation (6). A candidate

big core (denoted as cand_b) with minimum waiting time is selected. Then

the execution time of task ti on cand_b is estimated by equation (2). On

the other hand, we select a candidate LITTLE core (denoted as cand_l)

with minimum execution time as the target core of task ti to migrate. After

that, we need to set the maximum execution duration of task ti on cand_l

since task ti is a big task and cannot completely be executed on any

LITTLE core. We set the maximum execution duration of task ti on cand_l

as the waiting time for cand_b. Once cand_b is available, task ti will be

continuously executed on cand_b to meet its deadline. However, since the

clock period differs from the big core and LITTLE core, the execution time

on cand_b can be calculated by equation (12):

RTcand_b (ti) = ETcand_b (ti) – (pETcand_l (ti)．BLratio) (12)

where

BLratio =
clock⁡period⁡(𝑐𝑎𝑛𝑑_𝑏)

clock⁡period⁡(𝑐𝑎𝑛𝑑_𝑙)
 (13)

and pETcand_l (ti) denotes the execution time of task ti on the LITTLE core.

The BLratio gives the conversion ration based on the clock periods. Besides,

the migration cost is also considered and is calculated by 2% of execution

on cand_l which is referred to [15].

With the above estimations, we can calculate the completion time of

the task with and without migration. The completion time of migrating task

ti (Tmigrate) is calculated as the sum of the portion execution time on cand_l,

the remaining execution time on cand_b, and the migration cost. The cost

without migrating task ti (Tstay) is obtained as the sum of waiting time and

execution time on cand_b. Finally, we compare the completion time of the

two situations and select the one with earlier completion time. If Tstay is

lower, task ti will be stalled until cand_b is available and then execute on

it. Otherwise, if Tmigrate is lower, task ti will be executed on cand_l while

waiting for cand_b. After cand_b is available, the remaining portion of the

task ti will be completed on cand_b. Algorithm 3 summarizes the

estimation procedure.

 Algorithm 3. Migrate a big task to LITTLE cluster

Input: (1) big task ti (2) big cluster BC with big cores (3) LITTLE

cluster LC with LITTLE cores

Output: Task-to-core mapping

/* STEP1: Estimate the timing information of task ti on each core and find the

candidate core for each cluster */

1: for each core b in BC do

2: WTb (ti) = the waiting time of task ti on core b;

3: end for

4: cand_b = the candidate big core with minimum waiting time;

5: WTcand_b (ti) = the waiting time of cand_b;

6: ETcand_b (ti) = the execution time of task ti on cand_b ;

7: for each core l which is free in LC do

8: ETl (ti) = the execution time of task ti on core l ;

9: end for

10: cand_l = the candidate LITTLE core with minimum execution time;

11: pETcand_l (ti) = the execution time of partially completed task ti on cand_l;

12: RTcand_b (ti) = the execution time of remaining portion of task ti (will be executed

on cand_b);

13: MGcost = ETcand_l * 0.02;

/* STEP2: Migration decision based on the cost */

14: Tstay = WTcand_b (ti) + ETcand_b (ti);

15: Tmigrate = pETcand_l (ti) + RTcand_b (ti) + MGcost ;

16: if Tstay > Tmigrate then /* With migration */

17: Execute task ti on cand_l within pETcand_l (ti);

18: Execute remaining portion of task ti on cand_b within RTcand_b (ti);

19: else /* Without migration */

20: Stall task ti until cand_b is ready;

21: Assign task ti to cand_b; /* Algorithm 4 */

22: end if

4.6.2 Migrate a LITTLE task to big cluster

In this stage, we have estimated the LITTLE task ti is not able to complete

in the LITTLE cluster within its deadline. We then migrate this LITTLE task

to a big core to execute it. The first step is to estimate the slack of each big core

in the big cluster. We choose the big core with maximum slack to execute task

ti, which is the most robust big core in the big cluster. If we execute this task

on a weak big core, the execution time will be longer and may affect subsequent

tasks. Moreover, since the task is a lightweight LITTLE task, it will not cause

too much burden on the big core. The procedure is similar to the big task

migration estimating procedure. It is not repeated due to space limitation.

- 6 -

5 Evaluations

5.1 Experimental Setup

Our benchmark circuits are from ISCA'85 and ITC'99. The original

benchmark circuits are used as LITTLE cored and are expanded as big cores.

We then implement all the algorithms mentioned above in C++, and construct

an in-house simulator for big.LITTLE architecture with 4 big cores and 4

LITTLE cores. We set the operating voltage to 1.0V for all big cores and 0.8V

for all LITTLE cores. To simulate the influence of the NBTI effect, we

customize PTM model cards [13] with different aging scenarios and use

HSPICE simulation to obtain corresponding delay and power information.

We use TGFF [14] to generate task graphs, and each task graph contains

20 tasks. These 20 tasks include big or LITTLE tasks, and each big/LITTLE

task is either a critical or non-critical task. We use three different ratios of

critical tasks for experiments: 20%, 40%, and 60% (i.e. 4, 8, 12 critical tasks

in a task graph). Our in-house simulator operates with HSPICE to take these

task graphs as input, and the system lifetime and corresponding power

consumption can be obtained.
Big

Task ti

Choose a big core cand_b with
minimum waiting time: WTcand_b (ti)

Estimate execution time of cand_b:
ETcand_b (ti)

Estimate percentage of
completement on cand_l: pETcand_l (ti)

Execute task ti on
cand_b

Execute task ti on
cand_l before

cand_b is ready

Execute the
remaining portion of

task ti on cand_b

Tstay > Tmigrate ?
Yes

Stall task ti until
cand_b is ready

No

Without
migration

With
migration

Choose a little core cand_l with
minimum execution time: ETcand_l (ti)

Estimate the remaining time of
cand_b : RTcand_b (ti)

and Migration cost: MGcost

Tstay : WTcand_b (ti) + ETcand_b (ti)

Tmigrate : pETcand_l (ti) + RTcand_b (ti) + MGcost

Figure 5. big task migration estimating procedure

There are five policies in our experiment: Sym, Asym, Spare, Sym_mig,

and Asym_mig. Sym adopts the symmetric aging based method in the big

cluster. Asym adopts the asymmetric aging based method in the big cluster.

Spare uses an extra big core to handle critical tasks in a big cluster. Sym_mig

and Asym_mig further adopt the task migration technique on Sym and Asym,

respectively. Note that all of these policies adopt symmetric aging in the

LITTLE cluster. The generated task graphs are executed by each policy with

each benchmark pair (e.g. c432_c432d) and the average lifetime and power

consumption are obtained when the system ends its lifetime.

5.2 Lifetime and Energy Evaluation

Figure 6(a), Figure 6(b), and (c) present the lifetime of each policy under

20%, 40%, and 60% critical tasks respectively. The lifetime of each policy is

normalized to the Sym policy (baseline). The Spare policy can achieve 3.29x

lifetime improvement compared to baseline, but it will require an additional

area overhead of 25% due to the extra big core that handles critical tasks. Asym

can obtain at most 2.09x lifetime improvement. Among the policies with the

task migration technique, Sym_mig achieves 3.4x to 7.32x lifetime

improvement compared to the baseline, and Asym_mig achieves 5.29x to

10.78x lifetime improvement compared to the baseline. Both approaches

achieve a higher lifetime improvement than the policies without task migration.

The reason for such an improvement is part of the big tasks are migrated to the

LITTLE cluster, which reduces the waiting time and congestion of big tasks in

the big cluster. Besides, it gains some recovery time for big cores and the

timing degradation caused by NBTI is slow down. Compare Sym_mig and

Asym_mig, Asym_mig adopts the asymmetric aging so that the reserved big

cores can be used to handle critical tasks in the later life stage of the system,

thus, extend the lifetime of the system. Next, we discuss the average power

consumption of each policy. Figure 7(a), (b), and (c) show the average power

consumption under 20%, 40%, and 60% critical tasks of the five

policies. Since the Spare policy uses an extra big core to execute critical tasks,

its average power consumption is 1.09x to 1.22x compared to the baseline.

With the task migration technique, the power consumption of Sym_mig is 0.9x

to 0.87x compared to the baseline, which is reduced by 11.1% to 14.9%.

Asym_mig, which adopts the asymmetric aging, has further improved the

power consumption by 0.88x to 0.76x compared to the baseline and 0.99x to

0.97x compared to Sym_mig.

6 Conclusion

In this paper, we propose an aging-aware task deployment framework for

a heterogeneous multicore system. We suggest using asymmetric aging in the

big cluster and symmetric aging in the LITTLE cluster, and migrating tasks

between different types of cores to achieve a better system lifetime and lower

power consumption. The experimental results indicate that our method can

improve lifetime by 5.29x to 10.78x compared with the baseline symmetric

aging method, and it can also lead to an 11.8% to 23.8% improvement in

average power consumption.

References
[1] M. Basoglu, et al., “NBTI-Aware DVFS: A New Approach to Saving Energy and Increasing

Processor Lifetime,” in Proc. ISLPED 2010 , pp. 253-258

[2] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in multicores,” in Proc. MICRO

2008 , pp. 129-140

[3] F. Patema, A. Acquaviva, and L. Benini, “Aging-aware energy-efficient workload allocation for

mobile multimedia platforms,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, issue

8, pp. 1489-1499, 2013.

[4] Y. Chen, I. Lin and J. Ke, "ROAD: Improving Reliability of Multi-core System via Asymmetric

Aging," in Proc. ICCAD 2019, pp. 1-8

[5] K. Van Craeynest, et al., "Scheduling heterogeneous multi-cores through performance impact

estimation (PIE)," in Proc. ISCA 2012, pp. 213-224.

[6] M. Pricopi, et al., "Power-performance modeling on asymmetric multi-cores," 2013 International

Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES), Montreal, QC,

2013, pp. 1-10.

[7] E. Vasilakis, et al., "Modeling energy-performance tradeoffs in ARM big.LITTLE architectures," in

Proc. PATMOS, 2017, pp. 1-8.

[8] W. J. Song, et al., "Amdahl's law for lifetime reliability scaling in heterogeneous multicore

processors," in Proc. HPCA, 2016, pp. 594-605.

[9] T. R. Mück, et al., "Exploiting Heterogeneity for Aging-Aware Load Balancing in Mobile Platforms,"

in IEEE Transactions on Multi-Scale Computing Systems, vol. 3, no. 1, pp. 25-35, 1 Jan.-March 2017

[10] A. Baldassari, et al., "A dynamic reliability management framework for heterogeneous multicore

systems," in Proc. DFT 2017, pp. 1-6.

[11] Arm, big.LITTLE Processing technologies, https://www.arm.com/why-arm/technologies/big-little

[12] A. Thirunavukkarasu et al., "Device to Circuit Framework for Activity-Dependent NBTI Aging in

Digital Circuits," in IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 316-323, Jan. 2019,

doi: 10.1109/TED.2018.2882229.

[13] Predictive Technology Model (PTM). [Online]. Available http://www.ptm.asu.edu.

[14] R. P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” in Proc. International Workshop

on Hardware/Software Codesign, pp. 97-101, 1998.

[15] H.S. Chwa, et al.”Energy and feasibility optimal global scheduling framework on big. LITTLE

platforms,” in Proc. of RTSOPS, pp. 1-11.

(a) 20% (b) 40% (c) 60%

Figure 6. Lifetime comparison under different percentages of critical tasks

(a) 20% (b) 40% (c) 60%

Figure 7. Power comparison under the different percentage of critical tasks

1.03 1.13 1.02
1.53

2.10
2.70

2.31 2.17

6.04
5.21 5.30

6.44

8.64

7.32

8.72 8.64

0
1
2
3
4
5
6
7
8
9

10

c432_c432d c499_c499d c1908_c1908d b14_b21

N
o

rm
al

iz
ed

 L
if

et
im

e

Sym Asym Spare Sym_mig Asym_mig

1.03 1.05 1.03 1.26
1.94

3.29
2.39

1.80

5.55

7.32

5.58

6.96 7.75

9.44
9.42

10.78

0
1
2
3
4
5
6
7
8
9

10
11
12

c432_c432d c499_c499d c1908_c1908d b14_b21

N
o

rm
al

iz
ed

 L
if

et
im

e

Sym Asym Spare Sym_mig Asym_mig

1.04 1.15 1.02

2.09 1.84

2.87

1.42

2.69
3.40

3.91

6.15
6.96

5.29
5.59

8.66

9.28

0
1
2
3
4
5
6
7
8
9

10

c432_c432d c499_c499d c1908_c1908d b14_b21

N
o

rm
al

iz
ed

 L
if

et
im

e

Sym Asym Spare Sym_mig Asym_mig

0.96 0.99 0.98
0.90

1.13 1.12 1.14 1.13

0.78
0.89

0.82 0.80
0.77

0.87
0.81 0.77

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c432_c432d c499_c499d c1908_c1908d b14_b21

N
o

rm
al

iz
ed

 P
o

w
er

Sym Asym Spare Sym_mig Asym_mig

0.97 0.99 0.98 0.93

1.12 1.11
1.10

1.16

0.79
0.87

0.80 0.81
0.78

0.87
0.78 0.79

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c432_c432d c499_c499d c1908_c1908d b14_b21

N
o

rm
al

iz
ed

 P
o

w
er

Sym Asym Spare Sym_mig Asym_mig

0.96 0.99 0.99
0.86

1.14
1.16 1.22

1.09

0.82
0.90

0.84
0.79 0.80

0.88
0.83 0.76

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c432_c432d c499_c499d c1908_c1908d b14_b21

N
o

rm
al

iz
ed

 P
o

w
er

Sym Asym Spare Sym_mig Asym_mig

- 7 -

