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Abstract— Variable shaped-beam electron beam

lithography systems are widely used for mask writ-

ing. The exposure data, which is an input for variable

shaped-beam mask writing, must be a set of rectangles

with considering maximum size limit. It is also crucial

to fracture the layout into as few rectangles as possi-

ble for reducing the number of times the beam irradi-

ated. Although several methods have been proposed,

there is still no method to obtain an optimal solution

in practical calculation time with maximum size limit.

In this paper, we propose four types of Optimal Single-

Partitions and prove these partitions guarantee that

the optimal solutions are not lost. We performed com-

putational experiments to evaluate the performance

of methods based on these Optimal Single-Partitions.

Our methods yield better solutions than the previous

method and are faster than ILP in many cases.

I. INTRODUCTION

Large-scale integrated circuits are mass-produced by
using a transcription device called a stepper, which trans-
fer circuit patterns onto wafers at a reduced size. Vari-
able shaped-beam(VSB) electron beam lithography sys-
tems are widely used to write mask based on arbitrary
circuit patterns on photomasks[1], which are the original
plates to be transferred. VSB mask writing machines have
high resolution and can draw at high speed, but there are
some restrictions. First, the exposure unit is a rectangle.
All polygons that compose the layout must be fractured
into a set of rectangles. Secondly, there is the size limit
of the rectangle that the machine can write. All rectan-
gles must be less than or equal to maximum size limit.
Addly, it is important to fracture the layout into as few
rectangles as possible. Since each rectangle is written one
by one by the exposure system, a larger number of rect-
angles increases the number of electron beam irradiations
and also increases the photomask manufacturing cost[2].
Some methods were proposed to fracture an input recti-

linear polygon into rectangles not less than the size limit.
Kahng et al.[3] proposed ILP (integer linear program-
ming) based method, considering suppression of gener-
ation of small-width rectangles and maximum size limit.
ILP may obtain one of the optimal solutions, but requires
super-polynomial calculation time, so the solution cannot
be obtained in practical calculation time in many cases.

Therefore, the method of Kahng et al. fractures the input
layout into polygons with less than a certain number of
vertices in advance. This allows for fast solving of large-
sized inputs, but may not obtain an optimal solution. Fur-
thermore, a solution may not be obtained without addi-
tional a vertex. However, it does not explain how to select
additional edges that guarantee obtaining not to lose op-
timal solutions. Hasegawa et al.[4] proposed a heuristic
method for practical calculation time. This method can
find solutions quickly, but also may not obtain an optimal
solution.
In this study, we find and prove four types of OSP

(Optimal Single-Partition), that partitions a rectilinear
polygon without losing the solution that minimizes the
number of feasible rectangles. However, fracturing might
not be completed using only OSP. Therefore, we propose
a method to fracture a polygon in practical calculation
time by combining them with greedy partitioning and per-
form computer experiments. Furthermore, we propose a
second method using ILP, since the first method cannot
guarantee not to lose optimal solutions due to greedy par-
titioning. Kahng et al. performed heuristic partitioning
prior to ILP, which compromised the optimal solution.
Therefore, by using OSP before ILP, we can expect to
obtain the optimal solution faster than the method using
ILP alone. We also perform computer experiments using
such a method.
In the next section we describe previous work on the

layout fracturing problem. Section 3 presents four types
of OSP for the problem of fracturing into rectangles and
proofs of them. Section 4 compares our fracturing meth-
ods that uses four types of OSP with conventional meth-
ods. Finally, Section 5 gives conclusions and future re-
search directions.

II. PREVIOUS WORKS

Fracturing Problem. Fracture a given rectilinear
polygon into the set of rectangles of the minimum num-
ber below maximum size limit using only horizontal or
vertical line segments.
Hereafter, we call a rectilinear polygon simply a poly-

gon. Rectangle below maximum size limit is called a fea-
sible rectangle. Maximum size limit is represented by s.
An edge on a polygon whose inner angles of its endpoints
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are both 90◦ is called an end-edge, and a vertex whose
inner angle is 270◦ is called a concave vertex.

A. ILP Based Method[3]

The objective of this method is to minimize the num-
ber of rectangles. Since fracturing a polygon into a set
of rectangles eliminates all concave vertices, drawing two
line segments from each concave vertex inward of the poly-
gon as candidates of partition line. Create the grid graph
whose vertices are the crossings of all line candidates with
each other and with the boundary of the polygon, in ad-
dition to the original vertices of the polygon, and assign
bool variables xd(i, j)(d ∈ {v, h}, i = 1, 2, ..., hr, and
j = 1, ..., vr) to the edges extending from each vertex v in
the horizontal (h) or vertical (v) direction. The variable is
set to 1 if the corresponding edge is used for the partition
line, and 0 otherwise. Note that variables corresponding
to boundary edges are always set to 1 since they belong
to any partitioning. The objective is expressed as

minimize {1 +
∑
d,i,j

xd(i, j)−
∑
i,j

y(i, j)} (1)

To find the number of vertices, a variable y(i, j) is intro-
duced for each vertex which is set to 0 if v(i, j) is isolated,
and to 1 otherwise.

y(i, j) ≤ xh(i−1, j)+xv(i, j−1)+xh(i, j)+xv(i, j) (2)

ILP takes super-polynomial time and cannot be ob-
tained in practical execution time for problems larger than
a certain size. It has been proposed to pre-segment the
input polygons so that the number of vertices is less than
a certain number, and then use ILP to perform the seg-
mentation. This speeds up the calculation time, but does
not guarantee to obtain the minimum number of rectan-
gles. If a edge in the grid graph is longer than maximum
size limit, the graph is modified by adding a new edge
as needed. But even though the edges to be added must
be chosen appropriately to guarantee an optimal solution
obtained, how to select them was not described. In ad-
dition, there are cases where the optimal solution cannot
be obtained without additional vertices in the first place,
but they are not taken into account at all.

B. Heuristic Method[4]

Hasegawa et al. proposed a heuristic method, which
fractures a polygon into as few feasible rectangles as pos-
sible in a practical calculation time considering maximum
size limit. For the input polygon P , fracturing is per-
formed in the following two steps.

Step 1. The horizontal and vertical line segments from
the concave vertices of the polygon P are used to create
irregularly spaced grids within P . By selecting partition
lines from among these line segment candidates, P is frac-
tured into a set of rectangles.

Step 2. Fracture rectangles larger than maximum size
limit into the set of feasible rectangles.

III. OPTIMAL SINGLE-PARTITION (OSP)

For the problem of fracturing a rectilinear polygon,
Hotta et al. defined OSP [5], which partitions a rectilin-
ear polygon without losing the solution with the minimum
number of rectangles, as follows.

Optimal Single-Partition : Let X(R0) be the number
of feasible rectangles when the polygon R0 is fractured
into the minimum number of feasible rectangles. When
polygon R0 is partitioned into polygons R1 and R2, if
X(R0) = X(R1) + X(R2), then this partition is called
Optimal Single-Partition.

Firstly, we present a lemma to make the proof concise.

Lemma 1. Let R1 be the remaining polygon of R after
cutting off one side by a line segment L, which is hor-
izontal or vertical. If R is fractured into the minimum
number of feasible rectangles, then the number of feasible
rectangles that are included even partially in R1 is always
not less than X(R1).

Proof. Let OPT be one of the feasible rectangle sets
where the input polygon R is fractured into the minimum
number. Let N be the set of feasible rectangles in OPT
that are at least partially contained in R1. If outside of
R1 is cut off by L for all feasible rectangles in N , then
the polygon formed by the union of all remaining feasible
rectangles coincides with R1. Since cutting off a rectangle
by a horizontal or vertical line segment always results in
a rectangle, the number of feasible rectangles remains the
same as |N |. Therefore |N | ≥ X(R1).

The followings are the necessary and sufficient condi-
tions for four types of OSP for rectangular fracturing of
polygons.

A. Edge Focus Type OSP

Theorem 1. If there is a location on one of the sides that
shares an endpoint with end-edge Etip that is s away from
Etip, the polygon is divided by a line segment that starts
at this location, extends inside the polygon parallel to Etip

and ends at the crossing with the polygon’s perimeter. If
the polygon containing the edge Etip is rectangular or L-
shaped,

⌈ (Etiplength)
s ⌉ = ⌈ (cutlinelength)

s ⌉+⌈ (Etiplength)−(cutlinelength)
s ⌉

and the length of the dividing line is not longer than the
length of the edge Etip, then this partitioning is OSP (see
Fig. 1).

Proof. Perform Edge focus Type OSP of a polygon R0 by
focusing on a certain end-edge Etip. Denote the cutline
partitioning R0 into R1 and R2 as d1. Assume that poly-
gon R1 containing Etip is a rectangle or L-shape but d1
is not OSP. The relation between the number of feasible
rectangles of R0, R1 and R2 is as follows.

X(R0) < X(R1) +X(R2) (3)
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Fig. 1. Example of Edge Focus Type OSP

Fig. 2. (a)Example of

⌈ (Etiplength)

s
⌉ = ⌈ (cutlinelength)

s
⌉+ ⌈ (Etiplength)−(cutlinelength)

s
⌉.

(b)Example of ⌈ (Etiplength)

s
⌉ <

⌈ (cutlinelength)
s

⌉+ ⌈ (Etiplength)−(cutlinelength)

s
⌉(Contains

rectangles not tangent to Etip).

Let OPT be any one of the feasible rectangle sets where
the input polygon R0 is fractured into the minimum num-
ber. Considering OPT , there is always at least one feasi-
ble rectangle spanning d1 in OPT . Let N1 be the set of
feasible rectangles in OPT that are completely contained
in R1, and N2 be the others. This gives

|N1|+ |N2| = X(R0) < X(R1) +X(R2) (4)

Considering the polygon that combines all the rectan-
gles of N1, this contains all the areas tangent to Etip.
This is because the feasible rectangle across d1 cannot

be tangent to Etip by ⌈ (Etiplength)
s ⌉ = ⌈ (cutlinelength)

s ⌉ +
⌈ (Etiplength)−(cutlinelength)

s ⌉(see Fig. 2). Therefore, its
width is less than s and its height is Etip, and the re-
lation of the number of feasible rectangles is as follows.

|N1| = ⌈ (Etiplength)
s ⌉ = X(R1) (5)

For all the feasible rectangles in N2, cut off the side of
R1 by cutline d1. From Lemma 1,

X(R2) ≤ |N2| (6)

From equation (5) and equation (6), we obtain that

|N1|+ |N2| ≥ X(R1) +X(R2) (7)

which contradicts the equation (4). Therefore, it is proved
that cutline d1 is OSP.

B. L-Shape Cutout Type OSP

Theorem 2. A polygon is divided into two parts by a
straight line passing through the concave vertex, and the
partition is OSP if both the width and height of one poly-
gon are less than s, and no perpendicular line from the
concave vertex of the L-shape to the partition line (in-
cluding both ends) can be drawn (see Fig. 3).

Fig. 3. Example of L-Shape Cutout Type OSP. The red line is the
dividing line for L-Shape Cutout Type OSP.

Proof. Partition the polygon R0 into R1 and R2 by cutline
d1 satisfying the condition of L-Shape Cutout Type OSP.
Assume that R1 is L-shape whose width and height are
both less than s but d1 is not OSP. The relation between
the number of feasible rectangles in R0, R1 and R2 is as
follows.

X(R0) < X(R1) +X(R2) (8)

Let OPT be any one of the feasible rectangle sets where
the input polygon R0 is fractured into the minimum num-
ber. Considering OPT , there is always at least one feasi-
ble rectangle spanning d1 in OPT . Let N1 be the set of
feasible rectangles in OPT that are completely contained
in R1, and N2 be the others. This gives

|N1|+ |N2| = X(R0) < X(R1) +X(R2) (9)

Since R1 is L-shape whose width and height are both
less than s, X(R1) = 2. Here, Fig. 3 shows that |N1| ≥ 2,
thus the relation between |N1| and X(R1) is

|N1| ≥ X(R1) (10)

For all the feasible rectangles in N2, cut off the R1 side
by cutline d1. From Lemma 1,

|N2| ≥ X(R2) (11)

Then, from equations (10) and (11),

|N1|+ |N2| ≥ X(R1) +X(R2) (12)

can be derived. The equation (12) contradicts the equa-
tion (9). Therefore, it is proved that cutlined1 is OSP.

C. Rectangle Cutout Type OSP

Theorem 3. When the other endpoint of one of the sides
that shares an endpoint with the edge Etip is a concave
vertex, the polygon is divided by a line segment that starts

- 319 -



Fig. 4. Example of rectangle cutout type OSP

at this point, extends perpendicular to Etip inside the poly-
gon, and ends at its crossing with the polygon’s perimeter.
If the polygon containing edge Etip is an admissible rect-
angle, then This partition is OSP. (see Fig.4).

Proof. Perform Rectangle Cutout Type OSP of a polygon
R0 by focusing on a certain end-edge Etip. Denote the
cutline partitioning R0 into R1 and R2 as d1. Assume
that polygon R1 is a feasible rectangle containing Etip

but d1 is not OSP. The relation between the number of
feasible rectangles of R0, R1 and R2 is as follows.

X(R0) < X(R1) +X(R2) (13)

Let OPT be any one of the feasible rectangle sets where
the input polygon R0 is fractured into the minimum num-
ber. Considering OPT , there is always at least one feasi-
ble rectangle spanning d1 in OPT . Let N1 be the set of
feasible rectangles in OPT that are completely contained
in R1, and N2 be the others. This gives

|N1|+ |N2| = X(R0) < X(R1) +X(R2) (14)

Considering the polygon that combines all the rectan-
gles of N1, this contains all the areas tangent to Etip,
then |N1| ≥ 1. This is because d1 is perpendicular to Etip

and the feasible rectangle across d1 cannot be tangent to
Etip(see Fig. reffig:8). Here, since R1 is a feasible rectan-
gle, X(R1) = 1. Therefore, the relation of the number of
feasible rectangles is as follows.

|N1| ≥ X(R1) (15)

For every feasible rectangle in N2, cut off the side of R1

by cutline d1. From Lemma 1,

|N2| ≥ X(R2) (16)

From equation (15) and equation (16), we obtain that

|N1|+ |N2| ≥ X(R1) +X(R2) (17)

which contradicts the equation (14). Therefore, it is
proved that cutline d1 is OSP.

Fig. 5. Example of Alley Cut-Off Type OSP. The red line d1 is the
dividing line. (a) When E2 ̸= 0 (b) When E2 = 0.

D. Alley Cut-Off Type OSP

Theorem 4. Divide the polygon into two parts by a
straight line segment d1 passing through the concave ver-
tex. For an end-edge Etip including d1 completely, if there
is a point s away from Etip, a line segment starting from
this point is extended inside the polygon parallel to Etip.
The endpoint is where it intersects the outer circumfer-
ence of the polygon, and divide the polygon by this line
segment d2. For the part of Etip excluding d1, let E1 be
the part adjacent to the starting point of d1 and E2 be the
part adjacent to the ending point. If the polygon contain-
ing the end-edge Etip is a rectangle and satisfies

⌈ (Etiplength)
s ⌉ = ⌈ (E1length)

s ⌉+ ⌈ (E2length)
s ⌉

then this partition is OSP (see Fig. 5).

Proof. Partition the polygon R0 into R1 and R2 by cutline
d1 satisfying the condition of Alley Cut-Off Type OSP,
and R2 into R2a and R2b by cutline d2. Assume that
R2a is a rectangle containing both d1 and d2, but d1 is
not OSP. The relation between the number of feasible
rectangles of R0, R1 and R2 is as follows.

X(R0) < X(R1) +X(R2) (18)

Let OPT be any one of the feasible rectangle sets where
the input polygon R0 is fractured into the minimum num-
ber. Considering OPT , there is always at least one fea-
sible rectangle spanning d1 in OPT . Let N1 be the set
of feasible rectangles in OPT that are partially contained
in R1, N2 be the set of feasible rectangles that are com-
pletely contained in R2a, and N3 be the set of feasible
rectangles that are partially contained in R2b. Since d1
and d2 are exactly s apart, N1 and N3 never contain the
same feasible rectangle. This gives the relation between
the number of feasible rectangles as

|N1|+ |N2|+ |N3| = X(R0) < X(R1) +X(R2) (19)

For every feasible rectangle in N1, cut off the side of R2

by cutline d1. From Lemma 1,

|N1| ≥ X(R1) (20)

Considering a polygon that combines all the feasible
rectangles of N2, the feasible rectangle spanning d1 and
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the feasible rectangle spanning d2 cannot be tangent to
either E1 or E2 because of the span s (see Fig. 5).
Therefore, this polygon contains all E1 and E2 tangent
parts, with width less than s and height (E1length) and
(E2length), respectively.

|N2| ≥ ⌈(E1length)/s⌉+ ⌈(E2length)/s⌉ (21)

Under the condition ⌈(Etiplength)/s⌉ = ⌈(E1length)/s⌉+
⌈(E2length)/s⌉, the relation of the number of feasible
rectangles is

|N2| ≥ ⌈(Etiplength)/s⌉ (22)

Since X(R2a) = ⌈(Etiplength)/s⌉, then

|N2| ≥ X(R2a) (23)

For every feasible rectangle in N3, cut off the side of
R2a by cutline d2. From Lemma 1,

|N3| ≥ X(R2b) (24)

From equations (20), (23) and (24),

|N1|+ |N2|+ |N3| ≥ X(R1) +X(R2a) +X(R2b) (25)

For R2, cutline d2 is satisfying the condition of Edge focus
Type OSP, so

X(R2) = X(R2a) +X(R2b) (26)

From equations (25) and (26) the following is obtained,
but it contradicts equation (19).

|N1|+ |N2|+ |N3| ≥ X(R1) +X(R2) (27)

Therefore, it is proved that cutline d1 is OSP.

IV. EXPERIMENTAL RESULTS

We propose OSP Fracturing with greedy that partitions
a polygon as much as possible by OSP of Edge focus Type,
L-Shape Cutout Type, Rectangle Cutout Type, and Alley
Cut-Off Type. When there is no more OSP, selects a
line segment that does not increase the number of feasi-
ble rectangles among the straight segments starting from
concave vertices, then uses OSP again. Greedy partition
is chosen from candidates of partition line starting from
concave vertices for reducing the number of concave ver-
tices of a polygon. As an index for determining which
line segment to choose, we used the same cost value as in
Hotta’s method[5], and greedy partition was performed
using the slice line with the lowest cost value. We use
the IBM ILOG CPLEX Optimization Studio 22.1.0[6] to
solve all ILP instances. All tests run on a computer with
an Intel(R) Core(TM) i5-1240P CPU and 16 GB memory.

Fig. 6. Examples of regular convex polygons used for input.
Staircase convex polygon (#concave vertices is 3) and hexagonal
concave polygon (#concave vertices is 4).

Fig. 7. Comparison of OSP Fracturing with greedy to ILP for the
number of concave vertices of a staircase convex polygon.

A. Comparison with ILP method

This experiment was done to see how much faster our
method is than ILP and how close its solution is to the
optimal solution. Input data are two types of convex poly-
gons(see Fig. 6) with regularly increasing number of ver-
tices. Maximum size limit s is set at 50. Results are
shown in Fig.7 and Fig. 8.
It can be seen that ILP takes an explosive amount of

time as the number of concave vertices increases. In other
words, fast solving by ILP is possible only when the num-
ber of concave vertices is quite small. On the other hand,
our method provides near-optimal solutions at high speed,

Fig. 8. Comparison of OSP Fracturing with greedy to ILP for the
number of concave vertices of a hexagonal convex polygon.
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Fig. 9. The percentage of #rectangles obtained by the proposed
method for 9 different polygons, when #rectangles obtained by the
heuristic method is 100%. Experiments were conducted by varying
maximum size limit s to 50, 75, and 100.

regardless of the number of concave vertices. Further-
more, ILP can not obtain the solution due to out of mem-
ory at 23 concave vertices for the staircase type and at 20
concave vertices for the hexagonal type. Our method can
find solutions for even more concave vertices.

B. Comparison with heuristic method

Next, we conducted an experiment to see how much our
method could reduce the number of rectangles compared
to heuristic method in a practical calculation time. Our
method is compared to heuristic method[4] and to the
case of greedy partitioning only. For the results of this
experiment, Fig. 9 shows what percentage of solutions our
method obtained over the heuristic method. The inputs
were 9 different polygons and s = 50, 75, 100.

• greedy partitioning

• heuristic method[4]

• OSP Fracturing with greedy

It can be seen that our method obtains the best solution
in most cases. Note that since the computation times were
all less than one minute, no comparison was made.

C. OSP Fracturing before ILP

In OSP Fracturing with greedy, it does not guarantee
obtaining an optimal solution due to greedy partitioning.
Therefore, we propose OSP Fracturing before ILP, using
ILP to fracture remaining polygons when there is no more
OSP for the input polygon. It is expected that the opti-
mal solution may be obtained faster than when only ILP
is used. Fig. 10 shows an experiment comparing OSP
Fracturing before ILP with ILP only. Since the computa-
tion requires super-polynomial time, 9 different polygons
with a small number of vertices are used. Maximum size
limit is set at s = 25. Note that the computation time
limit was set to 2 hours.
The experimental results show that OSP Fracturing

before ILP does not necessarily reduce the computation
time compared to ILP. However, in some cases, it is able
to obtain the optimal solution in a short time for prob-
lems that would take an explosive amount of time with

Fig. 10. Comparison of OSP Fracturing before ILP and ILP in
fracturing 9 polygons with a small number of vertices.

ILP. For the eighth input, the ILP did not find a solution
within the time limit, while the proposed method did. For
the ninth input, neither method could find a solution.

V. CONCLUSIONS

We have found and proved four types of OSP for the
fracturing problem. Since these are partitions that do
not lose the optimal solution, they can be used in com-
bination with greedy partitioning or ILP to achieve both
high speed and good quality. Computer experiments con-
firmed that using OSP, in many cases, is faster than ILP
and obtains a smaller number of rectangles than heuristic
method. Furthermore, we confirmed that in some cases,
OSP Fracturing before ILP can save a significant amount
of time compared to simply solving with ILP. The actual
input could be a polygon with holes, about which we ex-
pect partitions like ”Alley Cut-Off Type OSP” that cuts
polygons to be of great help.
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