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Abstract—Numerous methods for detecting and localizing
anomalies have been proposed, and many have achieved great
success. In practical applications, various factors can lead to
different types of anomalies, each of which requires specific
treatment. Therefore, it is crucial to not only detect anomalies
but also to identify their specific types. This paper builds upon
an existing anomaly detection method, using it as a foundational
model, and extends its application toward anomaly classification.
We present a novel approach aimed at efficiently and accurately
identifying the type of anomaly by leveraging patch embeddings
and the anomaly score obtained during the initial anomaly
detection stage. Our paper introduces Anomaly-Focused Patch
Selection (AFPS), which is a unique mechanism that helps select
more meaningful patches for training a classification model.
AFPS demonstrates superior classification accuracy with 75%
fewer number of patches compared to the base method, which
simply employs random patch selection.

Index Terms—Deep Learning, Image Recognition, Anomaly
Detection, Anomaly Classification,

I. INTRODUCTION

Numerous methods for detecting and localizing anomalies
have been proposed, and many have achieved great success.
In practical applications, various factors can lead to different
types of anomalies, each of which requires specific treatment.
This paper aims to not only perform anomaly detection but
also anomaly classification, which help us identify the specific
types of detected anomalies.

We propose a method to efficiently and accurately identify
the type of anomaly by effectively using the patch embed-
dings and anomaly scores obtained at the anomaly detection
stage. Our paper introduces Anomaly-Focused Patch Selection
(AFPS), which is a unique mechanism that helps select more
meaningful patches for training a classification model. Our
method consists of two main stages, anomaly detection, and
anomaly classification. The first stage, anomaly detection, uses
a pre-trained network to extract features from input images and
obtain patch embeddings. The second stage, anomaly classi-
fication, uses Vision Transformer as a classification model,
which receives patch embeddings as training data to classify
anomaly images into two anomaly classes. More detailed
information about our classification method is shown below.

Patch Distribution Modeling
Feeding a set of normal images into a pre-trained
model and extracting features of them, which is used

Fig. 1: Classification performances by the number of
the patches selected from the original patch embed-
dings obtained at the anomaly detection stage. Our
patch selection method AFPS outperforms the base
method, which simply employs random patch selec-
tion, regardless of the number of patches selected for
training data.

for modeling the patch distribution of normal images.

Anomaly Detection
Based on the mean and covariance of the learned
distribution, Calculate the anomaly score for each
patch in the input image. anomalous area in an
image, where its features are different from normal
ones, gives a high anomaly score.

Anomaly Classification
We further narrow down the patches for anomaly
classification. The patches with high anomaly scores
are selected based on anomaly-focused patch selec-
tion(AFPS), which allows the classification model
to better focus on anomalous areas, leading to an
improvement in classification accuracy. The model
learns differences between types of anomaly images
and classify them into predefined anomaly classes.
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II. RELATED WORKS

In the past few years, many types of approach based on
deep learning for anomaly detection has been made and
they brought great success. There are two typical ways for
anomaly detection: Reconstruction-based method and Feature
extraction-based method.

1) Reconstruction-based: The reconstruction-based
method is widely used for anomaly detection and localization.
This method features identifying anomalies by reconstructing
input data using a machine learning model, typically
autoencoders(AE) [1], variational autoencoders (VAE) [2],
[3] or similar architecture. A model is trained to reconstruct
input data. Reconstruction error is calculated for each data
point by comparing the original input data with the model’s
reconstructed output. The key idea of this method is that
normal data points can be accurately reconstructed by the
model, whereas anomalies might bring higher reconstruction
errors. During inference, if the reconstructed image differs
significantly from the original, it may indicate the presence
of an anomaly. GANs [4], [5] can be adapted for anomaly
detection by training them to generate only normal data.
Anomalies are detected when the generated data significantly
deviates from the real data distribution. In addition to CNN
based model, Vision Transformer(ViT) [6] has also become a
common choice for reconstruction-based anomaly detection
[7], [8].

2) Embedding Similarity-based: This approach uses a deep
neural network to extract meaningful features from the normal
images for anomaly detection and localization [9], [10]. Since
this approach uses a pre-trained model for feature extraction,
it does not require parameters update in the model, which
is a great advantage of this approach. The anomaly score is
calculated based the comparison between the extracted features
of the test image and the normal image distribution obtained
in the training stage. PaDiM [11] is an outstanding embedding
similarity-based method, which has an important role in our
anomaly classification method. PaDiM uses Resnet18 [12] or
Wide-Resnet50 [13] as a feature extraction model. Features
are extracted from three different layers to obtain both local
and global contexts. After that, all extracted features are
concatenated to get the final embedding vectors.

III. METHODOLOGY

Our paper proposes an effective method to perform the
anomaly classification task by effectively using features that
are used for the anomaly detection phase. In real applications,
different matters can cause different types of anomalies.,
which require an appropriate treatment for each type of
anomaly. Therefore, performing anomaly classification as well
as anomaly detection can help many types of anomalies to
be addressed with better treatments. Fig.5 shows overview of
anomaly detection, classification, and Anomaly-Focused Patch
Selection. The anomaly detection stage is based on PaDiM, an
existing amazing method. This stage is essential to precisely
detect the location of the anomaly. It is also instrumental for
the classification model to be able to focus on the area of

the anomaly and its vicinity at the later anomaly classification
stage.

A. Embedding creation for anomaly detection

An existing anomaly detection called PaDiM is used for this
phase. Firstly, we obtain the distribution of normal data from
some images that have no anomalies. During the inference
phase, the model receives an input image with the size of
M × M and gives back extracted features with the size of
(H ×W ×D). After this process, those features are analyzed
in comparison with the learned distribution of normal data,
and the Mahalanobis distance is calculated for each patch.
Mahalanobis distance for a single patch x(i, j) is computed
with N(µij ,Σij) as follows:

M(xij) =
√
(xij − µij)TΣ

−1
ij (xij − µij) (1)

B. Anomaly-Focused Patch Selection

Fig.3 shows the overview of our patch selection method.
Patch embeddings have their own anomaly score for each
patch computed based on Mahalanobis distance which indi-
cates how each patch is different from normal data. Patch
embeddings consisting of both normal and anomalous include
a significant amount of redundant information, which can
increase computational costs. We attempt to narrow down
the number of patches in order to reduce their redundancy
and extract meaningful ones for accurate anomaly classifi-
cation. We propose an effective patch selection mechanism
with Gaussian distribution. They are selected stochastically
with Gaussian distribution, whose mean value is set to the
patch with the highest anomaly score. This method extracts
more anomalous patches located close to the mean and less
normal patches located distant from the central area. This
effective patch selection mechanism can also result in drastic
savings of computational resources. We test our patch selection
mechanism with 10, 50, 100 and 250 of selected patches
respectively to investigate how the number of patches can
affect the training and classification performance. Moreover,
to prove the effectiveness of our AFPS, we also test random
patch selection which randomly selects patches from the entire
set of original patches.

C. classification by ViT

The set of patches selected based on AFPS is then used as
training data for the classification model. We utilize a simple
Vision Transformer(ViT). The transformer encoder has multi-
ple layers, each containing self-attention mechanisms and feed
forward neural networks. Self-attention helps obtain global
relationships between tokens. The final token embeddings,
after passing through the transformer encoder, are used for
classification tasks using fully connected layers. As shown in
Fig.4, the dataset has two anomaly classes, Spot and Scratch.

IV. EVALUATION

A. Experimental Configurations

1) Implementation Conditions: Experiments in this paper
are conducted on Intel(R) Core(TM) i7-13700KF and an
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Fig. 2: Overview of our method for anomaly detection and classification. As shown in the left figure,
anomaly detection stage is entirely based on PaDiM.The right figure explains how anomaly-focused patch
selection(AFPS) works to prepare training data for the classification model.

Fig. 3: Yellow dots denote patches that are stochas-
tically selected with Gaussian distribution, whose
mean value is set to the patch with the highest
anomaly score.

NVIDIA GeForce RTX 4090 GPU. The operating system
is Ubuntu 22.04.1 LTS, the CUDA version is 11.8, and the
GPU acceleration library cuDNN is 8.7.0. PyTorch library is
used as the framework for implementing deep learning. In
all experiments, the learning rate for the ViT is set to 1e-3
with cosineLRscheduler that drops the learning rate according
to pre-defined epochs Adam is used as an optimizer in all
experiments.

Fig. 4: The set of normal images are used for patch
distribution modeling at anomaly detection stage.
Anomaly images with two anomaly classes (Spot and
Scratch) are used for training and validation data at
anomaly classification stage.

2) Dataset: Our paper uses Kolektor Surface-Defect
Dataset2 (KSDD2) provided by Visual Cognitive Systems
Laboratory in University of Ljubljana. [14] The dataset con-
sists of 356 images with visible defects and 2979 images
without any anomaly. It has several different types of defects.
The original image size is 630 paper uses 1000 normal images
to prepare the distribution of normal images and 171 anomaly
images with two anomaly classes (scratch and spot) for the test
data of the anomaly detection phase. In anomaly classification
stage, the set of anomaly images is further divided into train
data and test data and used to train and evaluate the model.
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Fig. 5: Detection results on anomaly anomaly de-
tection stage by PaDiM. Both ”Scratch” and ”Spot”
are accurately detected and their anomalous areas are
highlighted with red.

3) Detail of Models: Pre-trained ResNet-50 [12] is used
as feature extraction model in anomaly detection phase. In
anomaly classification, Vision Transformer with 8 heads, 4
layers of encoder and decoder blocks is used in all of our
experiments. The number of dimensions of input vectors is
64. Thr number of queries varies according to the number of
selected patches by AFPS.

4) Evaluation Index: Our patch selection method and clas-
sification performance are evaluated with the following met-
rics, Accuracy, Recall, Precision, F1 and FLOPs We test our
AFPS with 10 50 100, and 250 of selected patches respectively
to investigate how the number of patches can affect the training
and classification performance. We also perform our AFPS
with standard deviation values of 0.1, 0.15, 0.20, 0.25, 0.30.

B. Experimental Results

TableI shows the classification results by the number of
patches used as input data to the classification model. The
figures in the parentheses

Regardless of the number of selected patches, our AFPS
brings better classification performance than the random patch
selection. When 250 patches are selected based on AFPS, the
model achieves the best accuracy 96.4%, which outperforms
the score of the base method by 5%. Also, the results show
that in most cases a larger number of patches can yield better
evaluation scores.

Fig. 6: Simle diagram of anomaly-focused patch
selection(AFPS) by a standard deviation value. The
location of the patch with the highest anomaly score
is set to the mean value. The higher the standard
deviation is, the more patches are selected from
distant areas.

FLOPS increases in proportion to the number of patches.
We further investigate which standard deviation value of the
normal distribution can bring better accuracy scores. TableI
shows that the standard deviation of 0.15 gives the best
accuracy score of 98%.

V. DISCUSSION

A. AFPS vs Random Patch Selection

Comparing the results of Anomaly-Focused Patch Selec-
tion (AFPS) with those of the base method (random patch
selection), we prove that AFPS surpasses the base method
in every evaluation metric and in the effectiveness of the
patch selection mechanism. Moreover, using only 50 patches
with our method brings the much higher accuracy score than
using much more patches of 250 with the base method. This
is because our patch selection method strongly focuses on
which patch is more significant for anomaly classification.
The base method(random patch selection) does not take the
location of anomalies into account, which can bring more
unnecessary patches for accurate classification. On the other
hand, AFPS is designed to extracts more patches around the
most anomalous patch and fewer patches distant from the most
anomalous patch. This enables the model to concentrate on
anomaly classification without any unnecessary information.

B. The effects of standard deviation values

TableI shows that the patches selected with a standard
deviation value of 0.15 give the best accuracy score of 98%.
As shown in Fig.6, yellow dots are selected patches under the
condition of the given standard deviation value. The results
show that 0.15 is just the right value to obtain the most
effective set of patches for accurate classification. In contrast,
the value of 0.1 brings the poor accuracy of 85.5%. This
is attributed to the smaller range of patch selection. Patches
selected in too small range prevent the ViT model from
learning the relationship between the patches.
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TABLE I: Main Results

The number of patches Method Accuracy Recall Precision F1 FLOPs

10 (0.3%) Base 63.4 62.7 63.3 68.8 1.4M
Ours 81.2 82.0 81.2 82.7 1.4M

50 (1.5%) Base 87.3 87.0 87.3 88.5 6.8M
Ours 94.5 95.0 94.7 94.7 6.8M

100 (3%) Base 85.5 84.7 86.5 87.5 14.0M
Ours 92.7 92.4 93.2 93.6 14.0M

250 (7.5%) Base 90.9 90.0 92.85 92.3 38.5M
Ours 96.4 96.4 96.4 96.7 38.5M

TABLE II: Accuracy by the standard deviation value

sd 0.10 0.15 0.20 0.25 0.30
Accuracy 85.5 98.2 92.7 85.5 90.9

VI. CONCLUSION

We have proposed the effective anomaly classification
method based on anomaly-focused patch selection (AFPS).
Our method makes use of the output obtained at anomaly
detection stage for accurate anomaly classification. We have
proved that our AFPS surpasses the base method in every eval-
uation metric and in the effectiveness of our patch selection
mechanism. Our future work is to propose a more efficient
patch selection method to parform more accurate anomaly
classfication with smaller number of patches and to consolidate
two stages of our method into one practical stage for real
applications.
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for surface-defect detection: from weakly to fully supervised learning.
Computers in Industry, 2021.

- 332 -


