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Abstract— Simulating brain neural networks is cru-
cial for gaining insights into the functioning of the
brain and for advancing the development of artificial
intelligence. However, simulating large neural net-
works is very time consuming process. We propose
an FPGA architecture to accelerate the simulation
using parallel processing. Our proposed architecture
employs a unified scheduling and allocation scheme
to effectively increase the number of neurons while
maintaining a high degree of parallelism. Our results
demonstrate an impressive over 80% reduction in area
without compromising on processing speed.

I. INTRODUCTION

Brain neural networks refer to a complex network
of neurons in the human or animal brain. These bi-
ological neural networks are responsible for process-
ing and transmitting information within the nervous
system to achieve various body functions. Simulating
neural networks is very important to understand how
the brain works, and to develop artificial intelligence.
Neuronal network simulation has gain much attention
recently due to the advances in high performance com-
puting (HPC) [1].

The Leaky Integrate-and-Fire (LIF) model [2] is a
simplified mathematical model used to describe the
behavior of individual neurons in the brain. It is a ba-
sic and widely used model in neuroscience for under-
standing the dynamics of neural membrane potentials
and the generation of spikes. In this model, informa-
tion transfer among neurons is represented by an elec-
trical circuit with a parallel combination of a resistor
and a capacitor. A current source is used as synaptic
current input to charge up the capacitor to produce a
potential. When neuron voltage exceeds a threshold, a
spike is issued. To achieve a large scale neural network
simulation, a power and area efficient implementation
on computers is essential. FPGAs have significant po-
tential for power-efficient neural network simulations.

The basic idea of direct mapping of neurons to
FPGA hardware has been intorduced in previois stud-
ies [3]. While this method enables parallel execution
and autonomous neuron control, it significantly re-
stricts the FPGA’s resource utilization, limiting its
capacity to smaller-scale simulations.. This paper pro-
poses a novel scheduling and allocation method to im-

Fig. 1. Example of a brain neural network.
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Fig. 2. FPGA architecture using direct mapping.

plementing large neural networks on FPGAs.

II. FPGA ARCHITECTURE USING DIRECT MAPPING

In Fig.2, we illustrate the direct mapping of neu-
rons (nodes) to FPGA hardware. The initial po-
tential data is stored in the external memory of the
FPGA and is subsequently transferred to the respec-
tive kernels. Each individual node is represented by an
OpenCL kernel, and Inter-kernel data transfer is done
using OpenCL channels. A channel is a data trans-
fer mechanism between two kernels based on hand-
shake method. The read and write operations are ef-
ficiently managed by two dedicated kernels, while the
remaining kernels are designed as “autorun” kernels,
enabling automatic execution and control in response
to data availability. This approach maximizes par-
allelism while minimizing control overhead. Despite
allowing the maximum degree of parallelism, the uti-
lization of dedicated kernels for each node significantly
increases the resource utilization.

Table I shows the resource utilization of the direct
mapping of neurons. The logic utilization is 73% to
100 neurons. Therefore, it is impossible to implement
a large number of neurons. To address this challenge,
we propose a novel scheduling and allocation scheme
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TABLE I
COMPARISON OF RESOURCE USAGE.

Resource Number of neurons

50 100
Registers 964,065 1,341,644
Logic 494,888 (53%) | 679,384 (73%)
DSP 600 (10%) 679 (12%)
BRAM 632 ( 5%) 785 (7%)
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(b) Proposed FPGA
architecture.

(a) Scheduled DFG. Nodes
with the same color are as-
signed to the same kernel.

Fig. 3. Scheduling of nodes and allocating nodes to kernels.

to implement a large number of neurons, without com-
promising on the processing speed.

‘We represent a brain neural network as a data-flow
graph (DFG), where neurons are assigned to nodes,
and information transfers are represented by edges
connecting these nodes. We make an assumption that
the processing time of every neuron is equal. Using
this assumption, we apply ASAP (As Soon As Possi-
ble) and ALAP (As Late As Possible) scheduling on
the DFG to determine the mobility of the nodes. Sub-
sequently, we perform list-based scheduling and ker-
nel allocation simultaneously. Our priority list is con-
structed based on the following criteria:

e We set a maximum limit on the number of ker-
nels, which in turn restricts the level of parallel
operations at each step.

o Nodes with smaller mobility are given higher pri-
ority.

e Nodes that are connected to each other are more
likely to be assigned to the same kernel to opti-
mize data transfers.

Fig.3a shows an example of the proposed method
performed on the neural network in Fig.1l. Nodes
sharing the same color indicate that they can be as-
signed to the same kernels. The nodes scheduled in
the same control step are assigned to different kernels
to maximize parallel processing. On the other hand,
nodes that are connected and scheduled to different
control steps, are assigned to the same kernel to re-
duce resource utilization and to simplify the intercon-
nection network. Fig.3b shows the accelerator archi-

tecture for this neural network. Excluding the read
and write kernels, the number of kernels has been re-
duced from 10 to 3, and data transfer between kernels
has been reduced from 13 to just 3 when compared
to the previous architecture shown in Fig.2. This
substantial reduction of resource utilization has been
achieved without any compromise on processing time.

III. EVALUATION

We have successfully implemented the proposed
scheduling and allocation method using Python, en-
abling us to automatically generate FPGA architec-
tures for handling more than 1000 neurons in less than
a minute. The resource utilization can be reduced by
over 80% compared to the previous studies [3] with-
out a significant processing time penalty. The pro-
posed accelerator is implemented on a BittWare 520N
FPGA board, featuring a Stratix 10 GX FPGA. The
FPGA kernel codes were compiled using Intel FPGA
SDK for OpenCL version 19.4, while host codes were
compiled using gcc version 10.2.0. Through our eval-
uation, we’ve demonstrated the feasibility of accom-
modating over 1000 neurons on a single FPGA.

IV. CONCLUSION
We introduce a novel scheduling and allocation
scheme that substantially expands the scale of neural
network simulations while incurring minimal process-
ing time overhead. Our method enables the simula-
tion of over 1000 neurons on an FPGA, with a high
degree of parallel processing. This scheduling and allo-
cation approach allows for the automatic generation of
FPGA architectures in under a minute. Furthermore,
for even larger neural network simulations, scalabil-
ity can be achieved by employing multiple FPGAs or
by adjusting the processing time constraint to strike

a balance between scale and speed.

ACKNOWLEDGMENT
This research is partly supported by MEXT KAK-
ENHI, grant number 20H04197.

REFERENCES

[1] J. Jordan, T. Ippen, M. Helias, I. Kitayama,
M. Sato, J. Igarashi, M. Diesmann, and S. Kunkel.
Extremely scalable spiking neuronal network sim-
ulation code: from laptops to exascale computers.
Frontiers in neuroinformatics, page 2, 2018.

[2] S. Dutta, V. Kumar, A. Shukla, N. R. Mohapatra,
and U. Ganguly. Leaky integrate and fire neu-
ron by charge-discharge dynamics in floating-body
mosfet. Scientific reports, 7(1):1-7, 2017.

[3] Mizuki Harasawa, Hasitha Muthumala Waidya-
sooriya, and Masanori Hariyama. Direct Mapping
of Neural Circuits on FPGA. In 23rd Int. Conf. on
Parallel and Distributed Comp., Applications and
Technologies (PDCAT’22), 2022.

-334 -



