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Abstract— Convolutional neural networks (CNNs) are used
in various machine learning applications. In this work, we
show an acceleration scheme for CNN processing using field pro-
grammable gate arrays (FPGAs). High throughput operation is
achieved by pipelining operation and layer partitioning. We also
propose an automated design flow to map CNN operations on
FPGA. In our experiments, the CNN operations for the Fashion-
MNIST and CIFAR-10 datasets are about 140 to 250 times faster
compared to CPU execution.

I. INTRODUCTION

Convolutional neural networks (CNNs) have a wide range
of machine learning applications, e.g., in the field of image
processing such as industrial robotics and automated driving
technology. The operation speed is crucial in CNN inference
more than in learning, because real-time performance is of-
ten required. With the demand for real-time data processing,
field programmable gate arrays (FPGAs) are attracting atten-
tion for the high-speed and low-energy processing potential.
Thus, studies have been made on accelerating CNN operations
using FPGAs. It is a common strategy to exploit parallelism,
pipelining and hardware-oriented quantization in the acceler-
ator design[1, 2]. High-level synthesis (HLS) tools are often
used in the implementation.

In this paper, we propose optimization methods of CNN
data flow on FPGA by adjusting the amount of operations in a
stage with parallelization and layer partitioning. Based on the
optimization methods, we also propose an automated design
flow. The advantage of the flow is that it integrates pipelining,
parallelization, and layer partitioning considering the nature of
CNNE.

II. ConvoLuTIONAL NEURAL NETWORK

CNN is a kind of neural networks with a structure in which
features are extracted repeatedly in the convolutional and pool-
ing layers, and then passed through the fully connected layer.
A large portion of the CNN computation time is spent in the
convolution layer. In the convolution operation shown in Fig. 1,
there is no dependence on the operations for different 7, j, and
¢, where i X j is the size of the input feature map and c is the
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Fig. 1. Convolutional operation

number of output feature maps. Therefore, the operations can
be processed in parallel.

III.  AcceLERATION OF CNN PROCESSING

A. CNN Operations on FPGA

We assume a CNN processing system consisting of a CPU for
input/output data management and an FPGA for computation
of the whole CNN layers. The input data are converted into
appropriate data format and sent to the FPGA. We employ
common technique of parallelization and pipelining used in
FPGA accelerators for CNNs, and further optimize the dataflow
by layer partitioning. Parameters such as weights and biases are
stored in the FPGA memory in advance. After the computation
of the CNN layers is done, the results are sent back to the CPU.

B.  Dataflow Optimization

We employ dataflow optimization methods as shown in the
following three steps. In the experiments, these steps are
adopted in sequence. That is, cases with step 1, steps 1 plus 2,
and steps 1 plus 2 plus 3 are examined.

Step 1 Pipeline processing of each layer
Step 2 Parallelization of time-consuming layers
Step 3 Partitioning of time-consuming layers

The baseline dataflow of step 1 is layer-by-layer pipeline
processing for multi-layered CNNs. This structure enables
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higher throughput while maintaining low hardware resource
usage.

Now, the overall processing time of the CNN depends on
the slowest processing layer which decides the cycle time per
pipeline stage. With step 2, additional operation units are as-
signed to several slowest layers and the operations are processed
in parallel through multiple pipelines.

If further speedup is required after repeated application of
step 2, we partition several slowest layers to be processed in
multiple stages of the pipeline, in step 3. There can be a trade-
off between cycle time and the number of stages.

C. Design Automation

Finding optimal parameters in steps 2 and 3 requires repeated
synthesis and optimization. We implemented an automated
design tool for this procedure as follows. Here, we exploit the
nature of the typical network that a few layers are extremely
large and others are relatively small.

1. Construct each layer as a pipeline stage.

2. Classify the layers into large layers (class £ to be trans-
formed) and small layers (class S not to be transformed),
and let ¢4y be the maximum number of cycles among
class S.

3. For each layer [ in class £, in descending order of the
computational cost, parallelize layer [ to be fit within ¢,y
cycles using additional operation units. If layer / does
not fit within ¢, cycles, replace ¢, with the minimum
number of cycles for layer /.

4. Identify layers with the largest and the second largest num-
ber of cycles, layers [, and I}, with ¢, and ¢, cycles re-
spectively.

5. If cq/cp = r (a constant), partition [, into 2,3,4,...
pipeline stages and select the best configuration.

6. Synthesize the whole network calculation.

The constant r in line 5 is set to 1.4 in our experiments. Though
we performed the partition step (lines 4 and 5) only once, it can
be repeated several times.

IV. EXPERIMENTS

A. Environment and Datasets

The source code for CNN computation is written in C++ and
synthesized using Vitis HLS. The design target is Xilinx Alveo
US50 FPGA accelerator. Execution on Intel Xeon Silver 4214
CPU is also inspected for comparison.

We used two types of image processing datasets. CIFAR-10
is an image dataset of color photos of 10 kinds of vehicles and
animals. Fashion-MNIST is an image data set of 10 fashion
product photos. The layer structure of the CNN used is as
follows.

* CIFAR-10: 4 convolution layers, 4 pooling layers, 2 fully-
connected layers, 5 activation function layers.

* Fashion-MNIST: 2 convolution layers, 2 pooling layers, 2
fully-connected layers, 3 activation function layers.

TABLE I
PERFORMANCE OF IMAGE PROCESSING (FRAMES/SECOND)

system || Fashion-MNIST | CIFAR-10
CPU 165.59 26.56
FPGA (baseline) 73.84 8.86
FPGA (Step 1) 79.32 14.44
FPGA (Steps 1+2) 8680.56 | 332447
FPGA (Steps 1+2+3) 22988.51 6644.52
308889 1
261468
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Fig. 2. Execution time vs. LUT usage for CIFAR-10 processing

B. Evaluation

Table I shows the execution time with each parallelization
method. The baseline is a result of high-level synthesis of the
same source code as the CPU, and the parallelization steps are
applied in sequence.

The FPGA configurations are obtained using the automated
design flow. The execution time and the LUT resource usage
for CIFAR-10 processing, with a range of execution time con-
straints, is plotted in Fig. 2. The automated design tool could
quickly obtain the same results as the manually optimized con-
figuration for these datasets.

V. CoONCLUSION

The proposed parallelization methods take advantage of FP-
GAs to minimize the resource usage by performing pipeline
processing, parallelization, and layer partitioning with appro-
priate parameters at each layer. We consider the automated
design flow is generic and effective also for larger networks,
because it can quickly explore the whole design space sup-
posed in manual design. The evaluation is left for our future
work.
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