
Fast Integer Linear Programming for Set-Pair Routing Problem

Yasuhiro Takashima
University of Kitakyushu

Kitakyushu, Fukuoka, Japan

Abstract— This paper introduces an efficient ap-

proach to integer linear programming for addressing

the set-pair routing problem. Unlike previous works,

which either employ fast heuristics that may not yield

optimal solutions or exact methods that may exceed

practical processing time, the proposed method is

a rapid integer programming formulation. This ap-

proach ensures a balance between practical processing

time and the delivery of optimized or high-quality so-

lutions. Empirical evidence validates the efficiency of

the proposed method.

I. Introduction

In the domain of LSI physical layout design, addressing
the routing problem remains crucial [1–3]. A contem-
porary challenge arises in FPGA pin routing on printed
circuit boards, specifically defined as the set-pair rout-
ing problem [3]. This problem gains significance as
FPGA pin assignments can be altered after designing the
board layout. Consequently, efficient routing solutions
are required for arbitrary pairs of pins. Additionally, in
high-performance board designs, minimizing signal timing
skew is desirable. To tackle this issue, a straightforward
model involves minimizing both the maximum length and
the differences among various routes.
Existing solutions encompass a variety of methods, in-

cluding fast heuristics such as those proposed by [4–6],
and exact methods utilizing ILP or SAT as seen in [7, 8].
Fast heuristics rely on iterative refinement, achieving
rapid convergence but without a guarantee on length per-
formance. On the other hand, exact methods ensure an
optimal solution output if the optimum process converges,
while the high expense of runtime.
This paper introduces a fast ILP method for practical

runtime implementation without compromising optimal-
ity. The method streamlines the ILP formulation by elim-
inating unnecessary variables. Experimental results con-
firm that the proposed approach provides explicit routing
length performance within practical runtime constraints.

II. Set-pair routing problem

The set-pair routing problem, introduced in [3], is de-
fined as follows: Consider a graph G = (V,E), where V

and E correspond to the vertex set and the directed edge
set, respectively. Additionally, let S and T be the source-
pin set and sink-pin set, respectively, both subsets of the
vertex set V with a size of m. Connections are established
between pins s ∈ S and pins t ∈ T over the graph G. Each
connection from a source pin s is referred to as the route
of s. Importantly, each route is not allowed to share any
vertices with other routes. The objective of the problem
is to minimize the length difference among routes while
simultaneously minimizing the maximum length of any
route. This problem has been proven to be NP-hard [9].

Fig. 1. Example of input

Figures Fig. 1 and Fig. 2 depict the input and out-
put, respectively, of an example illustrating the set-pair
routing problem. In these figures, red-colored circles rep-
resent the source-pins, blue-colored circles correspond to
the sink-pins, and the red-colored lines depict the routes.
In the output illustrated in Fig. 2, the maximum length
of routes is 12, and the difference in length among the
routes is 7.
The solutions for the set-pair routing problem are clas-

sified into the following two categories. 1) fast heuris-
tics [4–6], and 2) exact method by ILP or SAT [7, 8].

SASIMI 2024 ProceedingsR1-11

- 56 -

Fig. 2. Example of output

Each fast heuristic in item 1 initiates by constructing a
feasible solution. Subsequently, it sequentially refines the
preceding solution. Notably, it is observed that the set-
pair routing problem, when its objective is transformed
into minimizing the total length of all routes, becomes
polynomially solvable. Consequently, these fast heuristics
leverage total-length minimization to swiftly obtain an
initial solution. However, it is crucial to note that these
methods, while very fast, lack a guarantee of output qual-
ity.

Conversely, for each exact method in item 2, the output
must be an optimum solution. Nevertheless, the optimiza-
tion process comes at a significant cost in terms of process-
ing time and memory usage. This is primarily due to the
inclusion of exponential constraints in their formulations,
making the optimization process resource-intensive.

III. Proposed method

A. ILP formulation

The proposed method comprises a two-step optimiza-
tion process. For both optimization steps, the ILP for-
mulation is nearly identical, with the exception of the
objective function. The input is specified as follows:� �

Graph G = (V,E), where Vertex Set V = {vi} and
Edge Set E = {(vi, vj)}, Source-pin set S = {sk} ⊂
V , Sink-pin set T = {th} ⊂ V� �

Here, the route from source-pin sk is denoted as rk.

Next, the variables are defined as follows:

� For route rk and edge (vi, vj), 0-1 variables xk,i,j

xk,i,j =

{
1 route rk passes through edge (vi, vj)

0 otherwise

� For route rk, integer variables zk, corresponding to
the length of rk

Then, the definition of constraints is outlined below:

Source-pin constraint For the source-pin sk(= vi),

� Only route rk outputs:
∑

j|(vi,vj)∈E

xk,i,j = 1

� The other routes do not output: xk′,i,j =
0 where k′ ̸= k, (vi, vj) ∈ E

� No route inputs: xk,j,i = 0 where ∀k, (vi, vj) ∈ E

Sink-pin constraint For the sink-pin th(= vj),

� Exact one route inputs:
∑
k

∑
i|(vi,vj)∈E

xk,i,j = 1

� No route outputs: xk,j,i = 0 where ∀k, (vi, vj) ∈ E

Ordinary-pin constraint For not source nor sink pin
vi,

� At most one route outputs:
∑
k

∑
j|(vi,vj)∈E

xk,i,j ≤ 1

� Out-degree and in-degree are same:
∑

l|(vl,vi)∈E

xk,l,i−∑
j|(vi,vj)∈E

xk,i,j = 0

Route-length constraint The length of route rk is zk:

zk −
∑

(vi,vj)∈E

xk,i,j = 0

Sub-cycle removal constraint No sub-cycle exists:∑
k

∑
(vi,vj)∈E|vi,vj∈Q

xk,i,j ≤ |Q| − 1 where ∀Q ⊊ V

For the Sub-cycle removal constraint, it is required for
every proper subset of V , leading to a situation where the
number of constraints is O(2n), with n is the number of
vertices. This situation may be impractical. The Lazy
Constraint scheme [10] provides a solution to this diffi-
culty. In the lazy constraint scheme, all constraints are
initially removed. Then, whenever an optimum solution
is obtained, the solution’s proper feasibility is checked.
If the solution has no sub-cycle, it must be exactly op-
timum. Otherwise, the corresponding sub-cycle removal
constraint is added, and the new problem is solved. This
scheme may add O(2n) constraints at worst. However, in
practical cases, the number of added constraints can be
much smaller.

- 57 -

B. Reachable vertex set

Using the formulation mentioned in the previous sec-
tion, the two-step optimization is realized in this section.

Initially, Naive Method is presented in Algorithm 1.

Algorithm 1 Naive Method

step 1: Minimize the maximum length of zk, and the op-
timum length is zmax.

step 2: Add the constraint zk ≤ zmax for each zk and
maximize the minimum length of zk.

If each route rk has an upper bound on its length, cer-
tain vertices may become inaccessible to rk. To assess
this impossibility, the concept of a reachable vertex set is
proposed. The calculation method for the lower bound of
route is defined in Algorithm 2 and Fig. 3 illustrates an
example of the lower bound of route rk.

Algorithm 2 Calculation of lower bound of route

Require: Graph G = (V,E), source-pin set S, sink-pin
set T

Ensure: Lower bound Lrk(vi) of the route rk for each
vertex vi

step 1: Calculate the length αsk(vi) between sk and vi
by breadth-first search.

step 2: Calculate the length βT (vi) between vi and an
arbitrary sink-pin by breadth-first search.

step 3: Calculate the lower bound or route rk
Lrk(vi) = αsk(vi) + βT (vi).

Fig. 3. Lower bound of route rk : Lrk (vi)

The time complexity of the calculation of Lsk(vi) con-
sumes O(mn) where the number of vertices and source-
pins are n and m, respectively. Using the lower bound of

route rk, the definition of reachable vertex set is shown in
definition 1.

Definition 1. Reachable vertex set For a given
integer B, a set of vertices whose lower bound of
route rk is equal to or less than B is called B-
reachable vertex set of rk.

To enhance the speed of the Naive method (Algo-
rithm 1), the reachable vertex set is employed. In the ILP
formulation, if the vertex vi is not in B-reachable vertex
set for the route rk, then xk,i,j = 0 is set for all edges
(vi, vj) ∈ E. Two modification points in Algorithm 1 are
that 1. the minimization of the maximum length (step 1),
and 2. the maximization of the minimum length (step 2).

For step 1, the upper bound of the maximum length
Bmax is required. The total-length minimization can be
accomplished in polynomial time. To obtain a feasible
solution, the total-length minimization is executed. The
maximum length of its solution is then utilized as Bmax,
and the minimization of the maximum length of rk is
solved. This step is referred to Total-max initial (Ti)
step.

Next, for step 2, named Limited min-max (Lmm) step,
the length of each route must be less than or equal to
zmax, which is the resulting length from step 1. Thus, for
each route rk, only the consideration of zmax-reachable
vertex set is sufficient.

As a result, Ti and Lmm Method is defined, where
step 1, step 3, and step 4 correspond to the calcula-
tion of the reachable vertex set, the minimization of the
maximum length, and the maximization of the minimum
length, respectively.

Algorithm 3 Ti and Lmm (T-L) Method

step 1: Calculate Lrk(vi) of the route rk for each vertex
vi with Algorithm 2.

step 2: Solve the total-length minimization and the max-
imum length of the solution is set to Bmax.

step 3: (Ti-step) Minimize the maximum length of zk
with Bmax-reachable vertex set, and the optimum length
is zmax.

step 4: (Lmm-step) Add the constraint zk ≤ zmax for
each zk and maximize the minimum length of zk with
zmax-reachable vertex set.

From the process log of Algorithm 3, the following ob-
servation is obtained. (a) The optimum solution can be
obtained in a very early stage. (b) However, confirming
its optimality requires a long optimization process. Thus,
an iterative method is proposed, which checks whether a
better solution exists than the best so far, as shown in
Algorithm 4.

In this algorithm, step 3.1 considers the constraint

- 58 -

Algorithm 4 Iterative Decision (ID) Method

step 1: Calculate Lrk(vi) of the route rk for each vertex
vi with Algorithm 2.

step 2: Solve the total-length minimization and the max-
imum length of the solution is set to Bmax.

step 3: The Following steps are executed iteratively.

step 3.1: Add the constraint zk ≤ zmax−1 for each zk
and check whether a feasible solution exists or not with
(zmax − 1)-reachable vertex set.

step 3.2: If exsits, reset zmax to the resultant maxi-
mum length and return step 3.1; Otherwise, escape this
loop.

step 4: Add the constraint zk ≤ zmax for each zk and
maximize the minimum length of zk with zmax-reachable
vertex set.

zk ≤ zmax − 1 and checks the existence of feasible so-
lution with (zmax−1)-reachable vertex set. Thus, in each
step, fast convergence may be obtained because the do-
main becomes smaller than that of the previous steps.

IV. Experiments

The empirical validation of the proposed methods in
section A will be conducted. The experimental environ-
ment is specified as follows: CPU Apple M2 Pro; Mem-
ory 32GB; OS macOS 13.2.1; Language Python 3.9.6;
Solver Gurobi 10.0.1; Threads 8. The benchmark data
used is the same as [4]. The specifications of the bench-
mark data are provided in Table I.

TABLE I
Benchmark data

Name # Vertices # Sources
E1 289 16
E2 239 16
B1 290 6
B2 683 12
B3 683 12
S1 90 6
S2 340 8
S3 800 12
F1 609 12

Firstly, data in Table I with fewer than 500 vertices are
selected: E1, E2, B1, S1, and S2. In the experiments, the
limitation of one ILP processing time is set to 10 minutes.
The run-time for E1, E2, B1, S1, and S2 are presented

in the corresponding columns in Table II; Raw Naive,
Lmm, Ti, T-L, and ID correspond to the results of Algo-
rithm 1, only Lmm-step in Algorithm 3, only Ti-step in

Algorithm 3, Algorithm 3, and Algorithm 4, respectively.
Furthermore, Raw [4] and [8] show the results of the cor-
responding papers, respectively. Since [7] is an ILP-based
optimization, it might be included into the comparison.
But, [8] reported the optimization performance of [8] sur-
passes that of [7]. Thus, [7] is omitted from the compari-
son. The experimental environments are as follows: 1) [4]:
Intel Core i7 4790K CPU, 32 GB memory, and Ubuntu
16.04 OS; 2) [8]: Intel Core i5-8500 CPUm 8 GB memory,
CentOS 7(2007) OS, and minisat2.2.0 for the SAT solver.
Each result indicates the resultant time in seconds, where
underlined corresponds to the time-over.

From these results, it can be observed that the Naive
method is much slower than the others, emphasizing the
efficiency of using the reachable vertex set. In particular,
T-L (Algorithm 3) method and ID (Algorithm 4) method
demonstrate fast convergence. This observation suggests
that restricting variables using the reachable vertex set is
widely beneficial.

Next, the maximum length and the difference be-
tween the maximum and minimum length of the proposed
method (Proposed), [4], and [8] are shown in Table III,
where Max and ∆ columns correspond to the maximum
length and the difference maximum and minimum length,
respectively.

In the table, the results of S1 and S2 from [8] are omit-
ted since they cannot obtain results due to the memory
limitation. Compared with the previous works, the pro-
posed method performs better than [4] and comparably
to [8]. Although [4] only needs less than 0.01 seconds
for the optimization time, there is no possibility of re-
finement even with extended processing time since the
method is deterministic. On the other hand, the proposed
method’s length performance of is comparable to [8]. [8]
reported that the lack of memory prevented the output of
S1 and S2. However, the method of [8] essentially require
the exponential number of constraints, so a slightly larger
memory size can not fundamentally enhance optimization
ability.

Then, the results are shown for larger data in Table I,
where they have 500 or more vertices. In this experiment,
only T-L and ID are employed. Table IV shows the re-
sults of run-time in seconds. Compared with T-L and ID,
ID tends to be faster than T-L. This result supports the
observation that confirming optimality may be slow con-
vergence. Unfortunately, the optimum solution of B3 and
S3 cannot be obtained due to the long run-time. Further-
more, speed-up is needed.

Next, Table V shows the results of the maximum length
and the difference between the maximum and minimum
length of the proposed method and [4]. These results also
demonstrate better solutions than those from [4].

Finally, the input data of S3 and the output by ID
are shown in Fig. 4 and Fig. 5, respectively, where the
source-pin and sink-pin correspond to red-colored and
blue-colored circles, respectively, and the route is shown

- 59 -

TABLE II
Run-time [sec.]

Method
E1 E2 B1 S1 S2

Total Total Total Total Total
MaxMin MinMax MaxMin MinMax MaxMin MinMax MaxMin MinMax MaxMin MinMax

Naive
78.58 605.45 2.23 10.93 53.15

1.83 76.75 5.38 600.08 0.45 1.77 0.30 10.63 18.81 34.34

Lmm
4.83 22.12 0.53 1.65 21.78

0.39 4.44 5.47 16.65 0.39 0.15 0.25 1.40 18.83 2.95

Ti
2.56 9.95 0.31 2.59 3.63

0.16 2.39 1.06 8.89 0.16 0.14 0.16 2.43 2.36 1.27

T-L
2.55 9.96 0.31 1.46 5.24

0.16 2.39 1.05 8.91 0.16 0.15 0.18 1.29 2.34 2.89

ID
2.50 9.53 0.33 1.23 3.86

0.18 2.32 0.61 8.92 0.18 0.14 0.15 1.08 0.98 2.88
[4] 0.003 0.003 0.001 0.000 0.002
[8] 27.6 3.4 281.5 – –

TABLE III
Result of Maximum length (Max) and difference between

maximum and minimum length (∆)

Name Proposed [4] [8]
Max ∆ Max ∆ Max ∆

E1 10 0 10 0 10 0
E2 14 6 14 6 14 6
B1 17 1 17 1 17 1
S1 12 7 12 8 –
S2 15 1 16 2 –

TABLE IV
Run-time [sec.]

Name T-L ID
MaxMin MinMax MaxMin MinMax

B2 19.83 7.43 2.19 6.10
B3 176.52 600.19 16.88 600.02
S3 612.23 600.11 643.95 110.21
F1 4.37 5.04 0.92 5.01

by the red bold line.
In conclusion, the proposed method demonstrates the

capability to output the optimum solution or the best-
known solution, making it significantly more efficient than
previous works.

V. Conclusion Remarks

This paper proposed a fast ILP method for the set-pair
routing problem, addressing limitations in previous works
categorized as fast heuristics without guarantees of ob-
taining the optimum solution or exact methods with slow
convergence within practical timeframes. The proposed

TABLE V
Result of Maximum length (Max) and difference between

maximum and minimum length (∆)

Name Proposed [4]
Max ∆ Max ∆

B2 30 1 30 1
B3 40 8 46 8
S3 28 1 30 1
F1 15 0 19 4

method presented an exact approach capable of conver-
gence within practical time limits, and its efficiency is
empirically confirmed.

As part of future work, further speed-up strategies are
needed. The size of the model generally impacts the con-
vergence speed of ILP optimization, emphasizing the im-
portance of detecting and eliminating unnecessary vari-
ables. Additionally, exploring various speed-up methods
for ILP-based formulations presents opportunities for fu-
ture research.

Acknowledge

Special thanks to Prof. Shimpei Sato from Shinshu
University for providing the benchmark data.

References

[1] Y. Kohira, S. Suehiro, and A. Takahashi. A fast
longer path algorithm for routing grid with obstacles
using biconnectivity based length upper bound. IE-
ICE Trans. Fundamentals vol. E92-A, No. 12 (2009),
pp.2971–2978.

- 60 -

Fig. 4. Input data of S3

Fig. 5. Output from ID

[2] Y. Kohira and A. Takahashi. CAFE router: A fast
connectivity aware multiple nets routing algorithm
for routing grid with obstacles. IEICE Trans. Fun-
damentals vol. E93-A, No. 12 (2010), pp.2380–2388.

[3] A. Takahashi. On set pair routing problem. IEICE
Technical Report vld2011, 44 (Sept. 2011), pp.23–28.
in Japanese.

[4] S. Sato, K. Akagi, and A. Takahashi. A fast length
matching routing pattern generation method for set-
pair routing problem using selective pin-pair connec-
tions. IEICE Trans. Fundamentals Vol. E103 ‒ A,
No. 9 (2020), pp.1037–1044.

[5] Y. Nakatani and A. Takahashi. A length matching
routing algorithm for set-pair routing problem. IE-
ICE Trans. Fundamentals Vol. E98-A, No. 12 (2015),
pp.2565–2571.

[6] K. Akagi, S. Sato, and A. Takahashi. Target pin-pair
selection algorithm using minimum maximum-edge-
weight matching for set-pair routing. in Proceeding
of SASIMI 2018 (2018), pp.337–342.

[7] S. Hara and K. Fujiyoshi. Max Length and Length
Difference Minimization for Set Pair Routing Prob-
lem with ILP. IEICE Technical Report vld2017, 60
(Nov. 2017), pp.337–342. in Japanese.

[8] K. Nagakura, R. Yokoya, and K. Fujiyoshi. A Rout-
ing Method by SAT for Set-Pair Routing Problem.
IEICE Technical Report vld2022, 21 (Nov. 2022),
pp.13–18. in Japanese.

[9] A. Itai, Y. Perl, and Y. Shiloach. The complexity
of finding maximum disjoint paths with length con-
straints. Networks Vol. 12, No. 3 (1982), pp.277–286.

[10] Gurobi. tsp.py. https://www.gurobi.com/

documentation/10.0/examples/tsp_py.html.

- 61 -

https://www.gurobi.com/documentation/10.0/examples/tsp_py.html
https://www.gurobi.com/documentation/10.0/examples/tsp_py.html

	Introduction
	Set-pair routing problem
	Proposed method
	ILP formulation
	Reachable vertex set

	Experiments
	Conclusion Remarks

