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Abstract - In the context of the rapid proliferation of electric 
vehicles and challenges such as shortages and price increases in 
rare metals, there is a growing demand for reused batteries with 
significant performance variations. Furthermore, with the 
increasing importance of remote monitoring, encompassing 
overall lifecycle management, efficient utilization, and early 
detection of malfunctions, including both reused and new 
batteries, there is a high demand for the development of a remote 
monitoring and history management system for lithium-ion 
batteries. Against this background, the authors are actively 
engaged in the development of a system for dynamic charge state 
monitoring using IoT and the accumulation of historical data on 
the cloud. This paper presents a report on the development of 
dynamic charge state monitoring using Kalman Filter and data 
communication/management using MQTT. 
 

I. Introduction 
 

In recent years, global warming caused by greenhouse gases 
such as carbon dioxide has become a social issue, and 
achieving a decarbonized society is being required as a 
solution. Electric vehicles are becoming increasingly popular, 
which has led to a growing interest in energy storage battery 
technology. Lithium-ion batteries, due to their high voltage, 
high energy density, and high power output, have rapidly 
gained popularity in applications such as electric vehicles. 

Storage batteries generate heat and can deteriorate quickly 
due to overcharging and discharging. Therefore, it is essential 
to have a battery management system (BMS) that can monitor 
the internal state of the battery. In recent years, there has been 
an increasing demand for optimal state management, effective 
utilization, early detection of malfunctions, and other 
requirements throughout the entire lifetime of new and reused 
batteries. Remote monitoring, real-time condition 
management, and historical data management have become 
crucial aspects of BMS. Therefore, the importance of BMS 
systems by using IoT, as shown in Fig. 1, is growing[1, 2]. 

Generally, on the edge side, systems are implemented using 
low-power, not very high-performance microcomputers. 
Therefore, functions that have light computational cost such as 
current, voltage, and temperature measurements are 
implemented. Whereas, on the host side, the estimation of 
internal states, and advanced and complex target (such as 
lifespan, anomalies, residual value, etc.) is performed by using 
Neural Networks (NN) [3-5]. State of Charge (SOC) and 
internal resistance are often estimated by using Kalman Filter 

or Recursive Least Squares (RLS) methods. However, the 
estimation was performed after completing to collect data for 
all timestamp like batch processing. 

For the above backgrounds, the authors have undertaken 
several initiatives. (1) First initiative is the development of an 
advanced IoT-type BMS for functional verification. To 
enhance the efficiency of function and algorithm development, 
a Raspberry Pi 4B, Python, and I2C are employed as the edge-
side computer, programing language, and communication 
protocol between sensors and Raspberry Pi 4B. While the 
Raspberry Pi 4B is not suitable for implementation in low-
power IoT edge systems due to its high power consumption, it 
is suitable to elevate the functional design completeness as a 
design platform. Once algorithm implementation is 
sufficiently completed, detailed design and the implementation 
can be carried out on a low-power practical system using 
compilers of other efficient programing language such as C++. 
(2) Among the internal state estimation functions, the SOC 
estimation function is implemented using real-time processing 
on the edge side with a Kalman Filter. Since the Kalman Filter 
has a light computational cost, it can operate even when 
Raspberry Pi 4B is replaced with a low-power microcomputer.  

In this paper, following an overview of the IoT-type BMS 
platform, we report on the real-time processing 
implementation of the Kalman Filter for estimating the SOC 
and the communication function with the host side using 
MQTT. 
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Fig. 1.  Configuration of the remote monitoring BMS 
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II. System Scheme 
 

For the system configuration enabling real-time remote 
state monitoring through IoT, this section describes the 
configuration for sensing, data communication, and real-time 
processing to achieve it. 
 
A. The BMS architecture 
 

Fig. 2 shows the BMS architecture, and Fig. 3 shows the 
actual picture of the BMS edge device. The BMS consists of 
six components: First, a battery pack composed of four 
lithium-ion batteries (Batteries). Second, sensors that measure 
voltage, current, and temperature from each lithium-ion 
battery (Sensors). Third, a temporary storage for the data 
measured by the sensors (Buffer). Fourth, an Extended 
Kalman Filter (EKF) [6] used to estimate SOC (State of 
Charge) based on the measured data. Fifth, a Publisher that 
sends voltage, current, temperature, and SOC data to AWS 
(Amazon Web Services). Sixth, AWS which stores and 
manages all the data.  

The SOC estimated by the EKF and the measured voltage, 
current, and temperature data are recorded in AWS. In this 
process, MQTT (Message Queuing Telemetry Transport) is 
used for data communication with AWS. 
 
B. MQTT protocol 
 

Fig. 4 shows the data communication scheme of the MQTT, 
which is a publish/subscribe communication model composed 
of publisher, subscriber, and broker. The publisher sends a data 
(message) to the broker and assigns an identifier (topic) to the 
message to distinguish it from other messages, as shown in Fig. 
4 (1). The subscriber then selects which messages it wants to 
receive by specifying a topic, as shown in Fig. 4 (2). If there is 
a message with the topic the subscriber specifies, the 
subscriber can receive the message from the broker, as shown 
in Fig. 4 (3). The publisher and subscriber communicate only 
with the broker who passes messages between them. This 
allows for quick and efficient delivery of messages, even with 
multiple publishers and subscribers. This characteristic is 
expected to provide an advantage in efficiently managing data 
from each battery pack when the number of the battery pack 
monitored by the BMS increases in the future. 

   
Fig. 3.  The actual picture of the BMS edge device 

 
Fig. 2.  The BMS architecture 

 
Fig. 4.  Communication Scheme of the MQTT 
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C. The equivalent circuit model and Extended Kalman Filter 
 

To describe the characteristics of a battery, the battery 
equivalent circuit model is used as Fig. 5. This model is 
composed of 𝑅! , 𝑅" , 𝑅# , 𝐶" , 𝐶# , and 𝑢$%& . 𝑅!  is the 
resultant resistance consisting of electrolyte and electric 
double layer resistance. 𝑅", 𝑅# are diffusion resistance, and 
𝐶" , 𝐶#  are capacitance of internal electrode. 𝑢$%&  is the 
value of open circuit voltage (OCV). In Fig. 5, 𝑖  is the 
terminal current of the battery, 𝑢' is the terminal voltage of 
the battery, 𝑢"  (𝑢# ) is the voltage of the parallel circuit 
consisting of 𝑅" (𝑅#) and 𝐶" (𝐶#). 

In recent studies, the method for estimating SOC based on 
the Extended Kalman Filter (EKF) has been proposed. The 
EKF is an approximately optimal state estimator for a 
nonlinear stochastic process subject to Gaussian white noises 
using the state space model [7, 8]. 
 

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) + 𝑤(𝑘) (1) 

𝑦(𝑘) = 𝐶(𝑘)𝑥(𝑘) + 𝑣(𝑘) (2) 

 
where (1) and (2) are the state and observation equations, 
respectively; 𝑥(𝑘), 𝑦(𝑘), and 𝑢(𝑘) are the state vector, the 
observation value, and the control input, respectively. The 
signal 𝑤(𝑘) is the system noise, and 𝑣(𝑘) is the observation 
noise. We assumed that both noises are zero-mean white 
Gaussian noise. For the battery equivalent circuit model, the 
detail of the state space model is shown as Table I. 

The EKF algorithm is described as Algorithm 1. This 
algorithm consists of three steps: Initialization value, 
Prediction, and Filtering. Here, 𝑥2( is the estimation vector, 
𝑥2 is the filtered estimation vector, 𝑃( is the error covariance 
matrix, 𝑃  is the filtered error covariance matrix. Then, as 
represented in equation (3), the 𝐶(𝑘) is the Jacobian matrix 
of ℎ5𝑥(𝑘)6  that represents the nonlinear relationship 
between OCV and SOC. 
 

𝐶(𝑘) =
𝜕ℎ5𝑥(𝑘)6
𝜕𝑥(𝑘) 8

)(+)-)(+).
= 9

𝑑𝑂𝐶𝑉
𝑑𝑆𝑂𝐶>/$%-/$%.!

, 1, 1, 𝑖(𝑘)@ (3) 

 
 
 
 
 
 

 
D. Missing value imputation mechanism 
 

Depending on the environment where the pack batteries and 
BMS are installed, there is the possibility of missing values 
due to sensor malfunctions. If the acquired data from sensor 
includes missing values, SOC estimation cannot perform, so it 
is necessary to impute missing values with other numerical 
values. 

Fig. 6 shows the missing value imputation mechanism we 
implemented. In the missing value imputation process, the 

 
Fig. 5.  Equivalent circuit model of Li-ion battery 

Algorithm 1 EKF 

Initialization Value 
𝑥2!(，𝑃!( 
 
Filtering Step 
𝑔+0" = 𝑃+0"( 𝐶1 (𝐶𝑃+0"( 𝐶1 + 𝜎2#)⁄ 	 
𝑥2+0" = 𝑥2+0"( + 𝑔+0"(𝑦+0" − 𝑦2+0"( ) 
𝑃+0" = (1 − 𝑔+0"𝐶)𝑃+0"(  
 
Prediction Step  
𝑥2+0"( = 𝐴𝑥2+ + 𝐵𝑢+		 
𝑃+0"( = 𝐴𝑃+𝐴1 + 𝜎3#  

TABLE I 
The Details of State Space Model 

 

𝐴(𝑘) =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0

0 +1 −
∆𝑡
𝑅!𝐶!

1 0 0

0 0 +1 −
∆𝑡
𝑅"𝐶"

1 0

0 0 0 1⎦
⎥
⎥
⎥
⎥
⎤

 𝐵(𝑘) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∆𝑡
𝐹𝐶𝐶
∆𝑡
𝐶!
∆𝑡
𝐶"
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

ℎ8𝑥(𝑘): = 𝑢#$% + 𝑢! + 𝑢" + 𝑖𝑅&  

State Vector 𝑥(𝑘) =

⎣
⎢
⎢
⎡
𝑆𝑂𝐶(𝑘)
𝑢!(𝑘)
𝑢"(𝑘)
𝑅&(𝑘) ⎦

⎥
⎥
⎤
 

Control Input 𝑢(𝑘) = 𝑖(𝑘) 

Observation Value 𝑦(𝑘) = 𝑢'(𝑘) 
 

 
Fig. 6.  The missing value imputation mechanism 
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average of each data (mean4, mean5, mean6) are calculated 
from the data recorded in the buffer for a few seconds, and 
missing values are imputed by the average. The calculation of 
the average is initially performed and then repeated every 
second. However, when calculating the average after 
accumulating a certain amount of data in the buffer, a time lag 
occurs between the actual measurement and the acquired data. 
Therefore, in this development, missing value imputation 
processing is performed only when the data acquired at the 
current time is missing. If the data is not missing, the acquired 
data is used directly for SOC estimation. 
 
E. Batch processing and real-time processing 
 

Fig. 7 shows the comparison of the batch processing and the 
real-time processing. In the batch processing, as shown in Fig. 
7 (a), the SOC estimation is performed on the host side after a 
series of processes, including sending and recording voltage 
(V), current (C), and temperature (T) data acquired at each 
time to the database are completed. In the proposed real-time 
processing, as shown in Fig. 7 (b), both data acquisition and 
SOC estimation are performed on the edge side. The data 
including SOC for each timestamp is sent to the database and 
recorded. In this development, as shown in Fig. 2, real-time 
processing including SOC estimation on the edge side is 
adopted. Therefore, compared to the batch processing, 
dynamic state management of the battery pack becomes 
possible, and it can be applied to dynamic diagnosis of 
deterioration and other applications. 

Ⅲ. Experiments and Results 
 

Fig. 8 shows the voltage and current in the charge and 
discharge patterns used in this development. Fig. 9 shows the 
actual data of terminal voltage, terminal current, and 
temperature of each battery measured by the BMS and the 
estimated SOC results using EKF from these data. 
Additionally, Fig. 10 shows the actual operating screen of the 
Publisher. From Fig. 8 and 9, it is confirmed that the BMS can 
measure voltage and current similar to the charge and 
discharge pattern, which indicates that the BMS sensing is 
performing correctly. The SOC was dynamically observed 
using the EKF on proposed BMS architecture. Further 
verification will be conducted for the accuracy of each sensor 
in the future. 

 
(a) Batch processing 

 

 
(b) Real-time processing (proposed processing) 

 
Fig. 7.  The comparison of batch processing and real-time processing 

 
Fig. 8.  Charge and discharge pattern of voltage and 
current 

- 81 -



 

 

 
Ⅳ. Conclusions and Discussions 

 
We reported on the development of a BMS with dynamic 

SOC estimation and communication function using MQTT as 
proposed development. 

We developed a functional verification platform for IoT-
type BMS and confirmed its operation. To improve the 
efficiency of function and algorithm development, the edge-
side system used a Raspberry Pi 4B as computer, Python as 
programming language, and I2C as communication protocol 
between sensors and Raspberry Pi 4B. Although Raspberry Pi 
4B is not suitable for implementation on the edge side due to 
its high power consumption, it enhances the functional design 

completion level as a design platform. Additionally, we 
implemented the SOC estimation function using the Kalman 
Filter on the edge side in real-time processing. Processing on 
the edge side reduced the burden on the host side and enabled 
real-time state monitoring. 

Looking ahead, for the long-term use of batteries, 
monitoring the SOC alone is insufficient; it is essential to 
monitor the deterioration state of the battery. RLS is a method 
for estimating the internal parameters of batteries, and by 
estimating the internal resistance of the battery using RLS, 
effective diagnosis of deterioration is possible [9]. With the 
dynamic estimation function in the BMS we proposed, 
dynamic deterioration diagnosis using RLS is enable. 
Moreover, by dynamically estimating the internal parameters 

 
(a) Voltage 

 
(b) Current 

 
(c) Temperature 

 
(d) SOC 

Fig. 9.  Measured data and estimated SOC of each battery by the BMS 
 

 

Fig. 10.  Actual operation screen of the Publisher 
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of each battery using RLS, it is possible to dynamically 
configure circuit models for battery internal state estimation 
using estimation techniques such as EKF [10]. 

NN is effective for more complex internal state estimation, 
such as estimating remaining life and residual value of 
batteries. However, NN requires a large amount of charge-
discharge data for estimation and diagnosis. Also, it consumes 
a lot of memory and has long calculation times, so it needs to 
be implemented on the host-side computer shown in Fig. 1. 
Because of these factors, the proposed BMS with 
communication function using MQTT is believed to be 
effective for making big data for NN estimation and diagnosis. 
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