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Abstract—This paper presents EMESN, an ex-
tended MOSFET hardware reservoir—computing ar-
chitecture for time-series tasks. A pulse-based cross-
bar exploits intrinsic threshold-voltage variation to re-
alize fixed random weights, while multi-mask map-
ping,
jointly enhance inference accuracy. Evaluations on
eight public datasets demonstrate accuracy gains of

ADC-range tuning and genetic optimization

up to 10.4 points and a 5x reduction in accuracy stan-
dard deviation, all with markedly lower static power
than previous MOS-ESN designs.

I. INTRODUCTION

Reservoir Computing (RC) is a neuromorphic machine-
learning framework in which low-dimensional temporal
signals are projected into a high-dimensional state space
by a fixed nonlinear network called the reservoir [1].
Because the reservoir weights are randomly initialized
once and then frozen, training reduces to fitting a lin-
ear read-out—typically with ridge or logistic regression—
thus eliminating back-propagation through time [2]. This
train-once, read-out-only paradigm sharply lowers com-
putation and energy consumption, making RC attractive
for edge devices with tight resource budgets [3].

Among existing RC variants, the Echo State Network
(ESN) is the most widely studied [4]. An ESN employs a
sparsely connected reservoir stored as a sparse weight ma-
trix; since that matrix never changes after initialization,
ESNs map naturally onto hardware, especially analog im-
plementations [3].

Driven by the demand for energy-efficient inference,
researchers have begun to realize reservoir dynamics di-
rectly in hardware [5]. Memristive crossbars, photonic
delay lines and spin-torque nano-oscillators have all been
demonstrated [6, 7, 8]. MOSFET technology, however,
combines mature fabrication, high yield and intrinsic
threshold-voltage variation that supplies weight diversity
without extra programming [9].

Although reservoir weights are fixed, software studies
show that reconfiguring connectivity can still boost accu-
racy. Particle-swarm optimization (PSO) and the K2 hill-

climbing algorithm have been used to prune or re-weight
links, yielding measurable gains [10, 11]. In physical RC,
by contrast, device conductances are hard-wired, so the
problem becomes a discrete search over mask patterns.
Continuous methods such as PSO lose effectiveness, and
general graph-learning techniques are impractical because
they rely on differentiable edge-loss functions that cannot
be evaluated in situ [12].

EMESN, proposed in this work, is an extended MOS-
FET reservoir-computing system enhanced by bespoke
optimizations. Our contributions are as follows:

1. Pulse-driven MOSFET reservoir: We adopt
LMESN, an leakage-based low-power analog reservoir
architecture proposed in another work, where leak-
age currents drive the state dynamics and threshold-
voltage variation provides diverse fixed weights.

2. Multi-mask mapping: We pack a large logical
reservoir onto a compact MOSFET array, increas-
ing utilization and enabling larger effective reser-
voirs—and therefore higher accuracy—without en-
larging silicon area.

3. Hardware—software co-optimization: By tun-
ing the ADC lower quantization bound (Viui,), re-
fining reservoir masks and applying a genetic algo-
rithm suited to our discrete hardware search space,
we improve accuracy and reduce variance across di-
verse time-series benchmarks.

The paper is organized as follows. Section II reviews the
concept of ESN and existing works of hardware ESN based
on memristors and MOSFETSs. Section III introduces the
hardware architecture of LMESN we based on, then dis-
cusses possible optimizations including multi-mask, ADC
range and mask optimization. In section IV, we evaluate
the proposed framework using variety of datasets, and
section V concludes the paper.
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Fig. 1. General Structure of ESN.

II. EcHO STATE NETWORK

A. ESN Introduction

Fig. 1 sketches the overall architecture of ESN. The
system consists of three layers: an input layer, a reservoir
layer, and a read-out layer, whose weight matrices are de-
noted by Wi,, W, and Wy, respectively. At time step
t, the input vector u(t) € R« is first mapped through
Win € RN=XNu and injected into the reservoir. The reser-
voir state x(¢) € RN+ is then updated according to

x(t) = fact(Winu(t) + Wx(t — 1)), (1)

where W € RM=*N= ig the recurrent reservoir matrix, and
fact is the activation function applied element-wise. The
read-out layer produces the network output via

y(t) = Wourx(t), (2)

with Wy, € RNv>Ne

For a length-T input sequence the simplest strategy is
to regard the output at the final time step as the predic-
tion for the entire sample,

outX(T)- (3)

However, when T is large, this ’last state’ approach
can discard information because the fading memory of
the reservoir cannot capture very long dependencies. A
common alternative is to average the reservoir states over
the whole sequence,

Yseq =

T
_ 1 _
X = T t:ZlX(t)v Yseq = Woutxv (4)

which empirically preserves more temporal features for
long inputs [16].

B. MOSFET ESN

In [9] a MOSFET-based hardware ESN (MOS-ESN)
was proposed. The design exploits the inherent threshold-
voltage variation of MOSFETs and represents signed
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Fig. 2. Hardware architecture of LMESN.

weights with a differential pair operating in the linear
region. Column currents are summed and sensed by a
source-amplifier that converts the total current into a volt-
age, which is then broadcast to the next row and recon-
verted to a current.

This scheme, although elegant, suffers from two main
drawbacks. First, operating the transistors in the lin-
ear region produces relatively large drain currents, so
power dissipation scales unfavorably with the input di-
mension. Second, because the output voltage is fed di-
rectly into the reservoir at the next time step—without
any ADC conversion—intermediate reservoir states can-
not be stored or revisited. The classifier must therefore
rely solely on the final state at ¢ = 7', which degrades
inference accuracy for long sequences.

III. EMESN

In this section we review LMESN;, a crossbar array for
ESN computation based on MOSFETSs, with leakage cur-
rent representing outputs, comprehensively explained in
[13]. The proposed crossbar array acts as the hardware
reservoir in between the input signals and software out-
put layer. Given the importance of randomness in ESNs,
we exploit the intrinsic variability in MOSFET threshold
voltages. The resulting leakage drain currents are used
to represent the input and reservoir weights, Wi, and W,
respectively.

A. Hardware Architecture

Hardware architecture of LMESN is illustrated in
Fig. 2. The cell array consists of 144 x 128 cells (cor-
respond to the LeakCell units shown in Fig. 2), where the
first 16 rows are designated for storing the input weight
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matrix Wj,, and the remaining 128 rows correspond to
the reservoir matrix W,e, defining a reservoir of size
128 x 128.

In each complete computation cycle, the capacitors con-
nected to each column are first pre-charged to a fixed
voltage level. Subsequently, the external input u(t) and
the internal reservoir state x(t — 1) are encoded as pulse
widths and applied to the gate terminals of corresponding
MOSFETSs in the array.

During this process, the voltage on the capacitors is
gradually discharged through the activated MOSFETs.
The resulting voltage drop AV of each capacitor is ap-
proximately proportional to the total number of activated
cells, their individual on-state currents, and the pulse
widths applied. This relationship can be expressed as:

AV x Z I; - pwin ;
i€ON

where I; is the drain current of the i-th MOSFET, and
pwin,; denotes the pulse width applied to that cell.

The updated capacitor voltage, representing the cur-
rent reservoir state x(t), is first transformed into another
output voltage by source follower (SF) representing the
activation function, then digitized by a 6-bit ADC. These
digital values are subsequently fed into a row-wise pulse
generator (PG), where they are converted into pulse sig-
nals to serve as the recurrent input for the next cycle,
along with the next external input u(¢ + 1). The compu-
tation can be expressed as:

Xpulses(t + ]-) = FADC*PG(fSF(Vpre - AV)) (5)

where Fapc_pag denotes the mathematical representa-
tion of ADC and PG. After all time steps T have been
processed, the digital reservoir states collected at each
time step are averaged to form a representative reservoir
feature vector. This averaged feature is finally passed
through the output layer to compute the overall output
of the system.

Each cell consists of two NMOS transistors, as illus-
trated in Fig. 2. The gate of M; is driven by a two-
input AND gate; its inputs are the row’s input pulse
and an enable stored locally, so M7 conducts only when
the cell is scheduled to participate in the current com-
putation. Because the reservoir matrix W in an ESN
is sparse, we employ a 128 x 128 Boolean mask that
specifies which cells are enabled. This mask can be cus-
tomized to optimize overall performance, as will be dis-
cussed in the following section. Transistor M, is biased
by a low gate voltage Viias. Consequently, even when a
cell is enabled the drain current remains in the leakage
regime, providing the desired ultra-low-power operation.
This effectively limits the total leakage current across
the array during each computation cycle, thereby min-
imizing energy dissipation without compromising func-
tional performance. Moreover, due to inherent device-
level variability—particularly the variation in threshold
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Fig. 3. Multi-mask method for large reservoir matrices.

voltage (Vin) across MOSFETs—the reservoir inherently
exhibits stochastic behavior. This intrinsic randomness
contributes positively to the diversity of the reservoir dy-
namics, which is beneficial for enhancing the expressive
capacity of the system.

Compared to memristor-based implementations and
our previously proposed MOS-ESN architecture, the
LMESN system offers several advantages[3, 9]. MOSFET
technology is more mature, cost-effective, and process-
stable than memristors. Moreover, while memristors re-
quire additional programming to introduce device vari-
ability, MOSFETs inherently exhibit threshold voltage
variation, providing randomness without costly initializa-
tion and maintaining reservoir diversity. Unlike our ear-
lier MOS-ESN design, LMESN operates with significantly
lower output current, which reduces dynamic power con-
sumption and facilitates the integration of additional
functionalities. Finally, the reservoir states are digitized
and retained at each time step, improving temporal ac-
curacy during recurrent processing and enabling future
exploration of diverse reservoir representations based on
stored digital features.

B. Multi-mask for Larger ESN

As previously described, each cell in the array includes
an enable signal. Given the inherent sparsity of the reser-
voir matrix, we can represent the on/off state of each cell
using a binary 128 x 128 switching matrix, referred to as
a mask. This mask determines which devices are active
during computation.

For more complex tasks, a larger reservoir often yields
better expressive power. To construct reservoirs larger
than the fixed 128 x 128 hardware array area-efficiently,
we propose a multi-mask-based approach that decom-
poses a larger reservoir matrix into multiple smaller sub-
blocks. As illustrated in Fig. 3, a reservoir matrix of size
K -128 x K -128 is divided into K? blocks, where K is an
integer scaling factor (e.g., K = 2 for a 256 x 256 reser-
voir). We generate K? distinct masks and sequentially
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map each of them onto the array for computation follow-
ing a predefined schedule. Since the input matrix also
needs to scale with K, the input vector is partitioned into
K segments and applied over K consecutive time steps
accordingly.

To maximize reservoir diversity, we design the masks
such that their activated positions are as different as pos-
sible. For the input matrix, recall that the array contains
16 dedicated rows for input encoding. If the input dimen-
sion is less than 16/ K, we assign different input segments
to different rows across the K time steps. If the input di-
mension exceeds 16/ K, we group overlapping rows into K
input masks such that the union of all masks reconstructs
a complete all-one input map.

For the reservoir matrix, which should be sparse, we
ensure that the K? reservoir masks are mutually disjoint.
This design choice increases structural variance across
masks, which improves the dynamical richness of the over-
all reservoir system.

To reduce energy overhead from repeated ADC usage,
we optimize the conversion schedule within each mask cy-
cle. Instead of performing an ADC operation after every
sub-step, we pre-charge the capacitors once at the be-
ginning of a mask cycle and perform ADC readout only
after all computations on that column are completed, as
demonstrated in Fig 3. As discussed earlier, the leakage
current is sufficiently small in LMESN cells to prevent
significant voltage decay, thereby avoiding output satura-
tion and preserving computational integrity throughout
the cycle.

C. Dynamics Tuning and Optimization

The spectral radius is a crucial factor in the behavior
of ESNs. If the spectral radius of the reservoir matrix
is significantly smaller or greater than 1, the dynamic re-
sponses tend to become either vanishing or explosive, thus
losing the diversity required for expressive reservoir com-
putation.

In our hardware implementation, the reservoir matrix is
implicitly defined by the device-level variability of MOS-
FETSs, making it impossible to directly calculate its spec-
tral radius. Moreover, combined with the complexities
introduced by SF, ADC and PG, an explicit calculation
of the spectral radius becomes intractable.

To address this, we focus on controlling the quantiza-
tion range of the ADC, particularly its lower bound. In
our g-bit ADC and pulse generator pipeline, the pulse
output can be formulated as:

N o ‘/;tate — Umin
out — :

29 — 1

VUmax — Umin ( )J

where Uiy and vpax define the ADC quantization range,
Nyt represents the number of output pulses, and g repre-
sents the ADC resolution. By tuning vy,;,, we effectively
adjust the dynamic sensitivity of the reservoir states,

which in turn affects the final accuracy.
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Fig. 4. Voltage-drop/pulse-widths relationship of single cells and
slope distribution of all cells.

In software-based ESNs, the exact numerical values of
the reservoir matrix are less critical, as long as the ma-
trix meets sparsity, zero-mean, and desired spectral ra-
dius conditions. However, in hardware-based ESNs, once
the chip is fabricated, each node’s response is fixed, mak-
ing the quality of the reservoir matrix task-dependent.
For a given task or dataset, certain masks tend to result
in higher inference accuracy on average, when evaluated
across multiple trials or random seeds.

A prior study proposes using PSO to optimize such
mask matrices [10]. In this approach, a continuous so-
lution space is mapped to a binary mask via threshold-
ing. However, PSO tends to converge prematurely to lo-
cal optima, and its design—relying on disconnected sub-
spaces created by thresholding—makes it difficult to scale
in high-dimensional scenarios. The original work used
3000 optimization iterations, which is computationally ex-
pensive for large datasets and often not cost-effective.

To overcome these limitations, we propose using a Ge-
netic Algorithm (GA) for mask optimization. Further-
more, leveraging the controllability introduced by vmin,
we augment the binary mask vector (of dimension N2)
with the quantization parameter v, as an additional
dimension, forming an optimization vector of dimension
N2 +1.

Unlike PSO, where particles are updated based on ve-
locity in continuous space, GA evolves the population
through crossover and mutation, which is naturally well-
suited for discrete search spaces. In the previous PSO
work, sparsity is not controlled during optimization iter-
ations. We propose to use special-designed mutation and
crossover methods to control the sparsity of the reservoir
matrices.

IV. EVALUATION

In this chapter, we evaluate the performance of the
EMESN system. For all experiments described in the
following subsections, the evaluation follows a consistent
procedure, as will be introduced in Seki Ryuto’s paper.
First, device-level characteristics are obtained through
HSPICE-based simulations, which reflect the physical be-
havior of each MOSFET-based cell. These parameters are
then used to perform a behavioral-level circuit simulation
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TABLE I
PERFORMANCE COMPARISON UNDER DIFFERENT RESERVOIR SIZES
AND MASK STRATEGIES

Accuracy (%)

Size 128 256 384
Dataset D (@) D O
LIB 52.1 56.7 47.7 58.3 50.0
SS 92.0 94.0 92.1 95.3 92.9
AWR 86.4 93.3 89.0 96.7 92.3
MSH 85.4 90.3 86.8 96.1 88.9
PD 87.5 89.7 87.9 91.1 86.8
SAD 84.4 92.0 87.0 95.9 89.0

implemented in Python, emulating the reservoir dynam-
ics over time. Based on the simulated reservoir states and
training labels, the output layer weights are computed
using Ridge regression [14]. The trained output layer is
subsequently used to evaluate the model’s performance
on the test dataset. All simulations and evaluations are
conducted on a workstation equipped with an Intel Core
19-13900 processor. All datasets and their full names are
provided in [15].

A. Device Measurements

We begin by performing device-level simulations to
characterize the voltage-drop/pulse relationship of the
proposed cells, which demonstrates the intrinsic random-
ness required for effective ESN computation. Monte Carlo
simulations were conducted using commercial 22 nm pro-
cess design kit (PDK), and the output current of 100 ran-
domly sampled cells is shown in Fig. 4. As observed, each
cell exhibits a relatively stable linear relationship between
input pulse-width and the resulting voltage drop, while
maintaining noticeable variation across different cells.

B. Optimization Results

We evaluated and analyzed the effectiveness of the
optimization strategies proposed in the previous sec-
tion. First, we focus on the multi-mask strategy, where
we examine training and inference results across sev-
eral datasets using reservoir matrix sizes of 128 x 128,
256 x 256, and 384 x 384 on a fixed hardware array of
128 x 128. To further validate the benefit of sub-mask
diversity, we test two different configurations: one with a
100% of overlap between masks, and the other with com-
pletely disjoint masks, noted as O and D, respectively.
As shown in Table I, increasing the overall reservoir size
with the proposed multi-masking strategy consistently
improves the classification accuracy. However, when sub-
masks share significant overlap, the performance gain is
less pronounced, confirming that diversity among sub-
masks plays a key role.
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Fig. 5. Accuracy-Vpin relationship of four different datasets.

TABLE II
AccUrAaCY COMPARISON BEFORE/AFTER GA/PSO OPTIMIZATION

Accuracy (%)

Dataset Sfiffjt] W/0 Opt  PSO [10] GA
Mean Std. Mean Std. Mean  Std.
LIB 66.4 52.1 2.12 57.7 1.30 61.7 1.28
ECG 90.0 78.4 1.94 81.2 0.71 87.2 0.76
JV 98.4 95.6 0.45 97.1 0.34 97.9 0.30
RS 63.9 74.0 2.05 78.2 1.36 84.8 1.31
SS 86.7 92.0 1.62 95.8 0.23 97.6 0.33
AWR 89.6 86.4 1.41 89.3 0.57 93.0 0.51
MPOAG 63.6 71.4 0.82 72.9 0.58 74.2 0.53
MSH 90.6 85.4 1.50 89.1 0.66 92.6 0.67

Next, we assess the impact of tuning the ADC quan-
tization lower bound vy, on the system’s dynamic be-
havior and final accuracy. Experiments are conducted on
the four different datasets, and the results are presented
in Fig. 5. We observe that varying vy, significantly al-
ters inference accuracy. Moreover, due to differences in
input dimensionality, sequence length and reservoir size,
the optimal vy, value is dataset-dependent. Therefore,
Umin Should be treated as a task-specific hyperparameter
for maximizing performance.

Finally, as described earlier, we apply GA optimization
to the reservoir mask structure. Table II summarises the
results alongside the software-ESN baselines and PSO op-
timization results [10]. To highlight the necessity of such
optimization, we begin by evaluating 100 randomly gener-
ated 128 x 128 masks. For each mask, we compute its best
inference accuracy across a sweep of vy, values, and then
record the corresponding mean and standard deviation.

We then apply GA to optimize the mask structure using
a population size of 64 and 100 iterations—substantially
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Fig. 6. Distributions of four datasets with/without optimization.

fewer than the number of cycles used in prior works such
as [10]. Each dataset is independently tested with 30 op-
timization runs, and we report the mean and standard
deviation of accuracy across these runs. Results show
that the GA-optimized masks achieve both higher aver-
age accuracy and lower standard deviation compared to
the randomly sampled masks, clearly demonstrating the
effectiveness and necessity of the proposed optimization.
Moreover, the optimized masks achieves accuracy fully
comparable to the pure-software ESN and even surpasses
it in cases where the software model overfits because of
limited training data [16]. We also visualize the inference
accuracy distributions for four representative datasets us-
ing kernel density estimation (KDE), as shown in Fig. 6.
The results, covering both 128 x 128 and 256 x 256 reser-
voir sizes with our multi-mask methods, further highlight
the superiority of the optimized mask structures.

V. CONCLUSION

We have introduced EMESN, an extended leakage-
driven MOSFET ESN that exploits device threshold-
voltage variation. Operating in the sub-nanoamp regime
cuts static power, while pulse-based stimulation im-
proves linearity and supports alternative reservoir encod-
ings. A multi-mask strategy maps large virtual reser-
voirs onto a fixed-size array, boosting accuracy on de-
manding datasets. Finally, by analyzing the influence
of ADC quantization range and jointly optimizing mask
patterns and Vi, with a genetic algorithm, we achieve
up to 10 percentage point higher accuracy with 5x re-
duction the accuracy standard deviation. These results
show that careful mapping and quantization co-design can
bring CMOS physical reservoirs to parity with, and some-
times beyond, their software ESN counterparts.
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