
A Design Method for Single-Rail LUT Cascades

Tsutomu Sasao,
Department of Computer Science,
Meiji University, Kawasaki, Japan

Abstract— This paper presents a method to realize logic func-
tions by single-rail LUT cascades. Main results include: 1) Any
2m-variable function can be realized by a single-rail cascade with
(m+ 1)-LUTs. The number of LUTs is at most 2m+1 − 1. There
exists a 2m + 1 variable function that cannot be realized by the
single-rail cascade with (m + 1)-LUTs. 2) When a 2m-variable
function has a functional decomposition f(X1, X2), where X1

and X2 have m variables, and the column multiplicity of the de-
composition is µ, the number of LUTs can be reduced to 2µ − 1.
3) Any n-variable function can be realized by a single-rail cas-
cade with seven (n − 1)-LUTs. 4) Ad-hoc methods to realize a
n-variable function using two or three (n− 1)-LUTs.

I. INTRODUCTION

Two of the most crucial problems in modern LSIs are their
long design time and short life cycles. A solution to these prob-
lems may be reconfigurable architecture. Reconfigurable ar-
chitecture reduces the hardware development time drastically,
since single LSI can be used for various applications.

Reconfigurable devices include random access memories
(RAMs) and programmable logic arrays (PLAs). They are
easy to design. However, when the number of input variables n
is large, the necessary hardware becomes too large. Thus, field
programmable logic arrays (FPGAs) are often used. FPGAs
implement random logic networks of lookup tables (LUTs),
and they require layout and routing in addition to logic design.
Since the area for programming and interconnections are much
larger than the logic area, FPGAs require large chip area. This
paper considers the realization of logic functions by LUT cas-
cades. Cascade is one of the simplest structures and easy to
layout. Since the interconnection is limited to only the adja-
cent cells, area and delay are minimum.

Cascade realizations of logic functions were considered in
1960’s [5]. Excellent survey papers can be found in [6].

The cascades can be classified as 1) Single rail and multi-
rail, and 2) Irredundant and redundant1. Fig. 1.1 is a single-
rail cascade with irredundant inputs; Fig. 1.2 is a multi-rail
cascade with irredundant inputs; Fig. 1.3 is a single-rail cas-
cade with redundant inputs; and Fig. 1.4 is a multi-rail cascade
with redundant inputs.

In a single-rail cascade, the number of wires between adja-
cent cells is one, while in a multi-rail cascade, the number of

1This terminology was used in [14]. In this case, redundant inputs can-
not be removed. So, cascade with repeated input variables may be more
desirable terminology.

f

x x2 x x x5 x6 xnxn-1

Fig. 1.1. Single-rail cascade with irredundant inputs.

f

x x2 x x x5 x6 xnxn-1x7 x8

Fig. 1.2. Multi-rail cascade with irredundant inputs.

f

x x2 x x x5 x xnxn-1

Fig. 1.3. Single-Rail cascade with redundant inputs.

f

x x2 x x x5 x6 xnxn-1x x5

Fig. 1.4. Multi-Rail cascade with redundant inputs.

wires is more than one [10]. In an irredundant cascade, each
variable is connected to only one input terminal of the cascade,
while in a redundant cascade, some variables are connected to
two or more input terminals of the cascade. Irredundant cas-
cades can represent only a fraction of functions. However, two-
rail redundant cascades of three-input cells can represent any
functions . A cell is also called a lookup table (LUT).

Efficient design methods for multi-rail cascades are avail-
able [12]. Both combinational and sequential implementations
of multi-rail cascades exist. As for combinational realizations,

R2-8 SASIMI 2025 Proceedings

- 121 -

LSI chips for multi-rail cascades have been developed [8]. As
for sequential realizations, both FPGA and emulator on a PC
[7], were developed.

On the other hand, single-rail cascades were not available
until recently. However, recently AMD developed FPGAs
that can implement single-rail cascades [16]. They have spe-
cial interconnections called cascade multiplexer paths among
LUTs in a slice [16] of an FPGA, to minimize the interconnec-
tion delay. AMD Versal CLBs [16] have cascade multiplexer
paths, which are useful for single-rail cascade. The delay times
for an LUT and that for the routing between LUTs within the
same CLB are in the range of 10 to 100 ps. On the other hand,
the delay time for general routing highly depends on the length
of the routing. For very short routing, it is around 300 ps, while
for a long routing, it is around 3 to 7 ns. So, when the given
function is realized by a single-rail cascade using at most eight
LUTs, the delay time for the function can be estimated accu-
rately.

When a function has an iterative disjoint decomposition, we
can easily find an irredundant cascade using conventional de-
composition algorithms [1, 2]. However, not all functions have
such decompositions. As for redundant single-rail cascades,
no efficient method to realize given functions were available to
the authors’ knowledge2. In this paper, we show a method to
realize redundant single-rail cascades.

II. SYSTEMATIC METHOD FOR SINGLE-RAIL CASCADE

From here, we use the terminology in [9]. An LUT that
realizes any n-input function is denoted by n-LUT.

Theorem 2.1 Any function with n = 2m variables can be re-
alized by a single-rail cascade with (m+1)-LUTs. The number
of LUTs is at most 2m+1 − 1.

(Proof) Expand the function f(X1, X2) into

f(X1, X2) =

2m−1∑
⊕

i=0

X�ai
1 f(�ai, X2),

where X1 = (x1, x2, . . . , xm) and X2 = (xm+1, . . . , xn).
This is obtained by applying Shannon expansions m times.
X�ai

1 = 1 if and only if X1 = �ai, and �a0 = (0, 0, · · · , 0, 0),
�a1 = (0, 0, · · · , 0, 1), �a2 = (0, 0, · · · , 1, 0), and �a3 =
(0, 0, · · · , 1, 1).

Consider the circuit shown in Fig. 2.1 (m = 2). It satisfies
the relations:

g0 = h0(X2),

g1 = g0 · p1(X1)⊕ h1(X2),

g2 = g1 · p2(X1)⊕ h2(X2),

· · · = · · ·
g2m−1 = g2m−2 · p2m−1(X1)⊕ h2m−1(X2),

where pi(X1) = 1 iff X1 = �ai.
2An exception is [15], which is quite hard to read.

The circuit in Fig. 2.1 realizes f(X1, X2) when

h2m−1(X2) = f(�a2m−1, X2),

h2m−2(X2) = f(�a2m−2, X2)⊕ f(�a2m−1, X2),

· · · = · · ·
h1(X2) = f(�a1, X2)⊕ f(�a2, X2),

h0(X2) = f(�a0, X2)⊕ f(�a1, X2).

It is clear that hi(X2) for i = 0, 1, . . . , 2m − 1 are unique.
�

Fig. 2.1. Cascade realization for a function with n = 2m = 4 variables.

Example 2.1 Consider a function f(X) with n = 2m = 4. In
this case, partition X into X1 = (x1, x2) and X2 = (x3, x4).
The function can be represented as

f(X1, X2) = x̄1x̄2f00(X2)⊕ x̄1x2f01(X2)⊕
x1x̄2f10(X2)⊕ x1x2f11(X2).

Consider the cascade shown in Fig. 2.1.
In this case,

p0(X1) = x̄1x̄2, p1(X1) = x̄1x2,
p2(X1) = x1x̄2, p3(X1) = x1x2.

• When X1 = (1, 1), the output of p3 is 1. Thus, the right-
most AND gate produces 0, and the output g3 is

h3(X2) = f11(X2).

• When X1 = (1, 0), the output of p2 is 1. Thus, the middle
AND gate produces 0, and the output g3 is

h2(X2)⊕ h3(X2) = f10(X2).

• When X1 = (0, 1), the output of p1 is 1. Thus, the left-
most AND gate produces 0, and the output g3 is

h1(X2)⊕ h2(X2)⊕ h3(X2) = f01(X2).

• When X1 = (0, 0), all the outputs of pi are 0. Thus, the
signal propagates from the left to right, and the output g3
is

h0(X2)⊕ h1(X2)⊕ h2(X2)⊕ h3(X2) = f00(X2).

- 122 -

From these equations, we have:

h3(X2) = f11(X2),

h2(X2) = f11(X2)⊕ f10(X2),

h1(X2) = f10(X2)⊕ f01(X2),

h0(X2) = f01(X2)⊕ f00(X2).

Corollary 2.1 Any function with n = 2m + 1 variables can
be realized by a single-rail cascade with (m + 2)-LUTs. The
number of LUTs is at most 2m+1 − 1.

(Proof) In the proof of Theorem 2.1, let X1 =
(x1, x2, . . . , xm) and X2 = (xm+1, . . . , xn), where X2 has
m+ 1 variables. In this case, LUTs for hi has (m+ 2) inputs.
The number of LUTs is 2m+1. �

The circuit derived from the proof of Theorem 2.1 require
many LUTs. When the given function has a functional decom-
position, we can realize a cascade with fewer LUTs.

Theorem 2.2 Any function with n = 2m variables can be
realized by a single-rail cascade with (m + 1)-LUTs. The
number of LUTs is at most 2μ − 1, where μ is the column
multiplicity of the decomposition chart for f(X1, X2), where
|X1| = |X2| = m.

(Proof) Suppose that the function f(X1, X2) can be repre-
sented as

f(X1, X2) =

μ−1∑
⊕

i=0

pi(X1)qi(X2),

where pi(X1) shows the columns that produce the column
function qi(X2) (i = 0, 1, 2, · · · , μ− 1) as shown in Fig. 2.2.

X1

p0 p1 · · · pμ−1

X2 q0 q1 · · · qμ−1

Fig. 2.2. Decomposition chart of a logic function with the column
multiplicity µ.

Consider the circuit shown in Fig. 2.3 (μ = 3). It satisfies
the relations:

g0 = h0(X2),

g1 = g0 · p1(X1)⊕ h1(X2),

g2 = g1 · p2(X1)⊕ h2(X2),

· · · = · · ·
gμ−1 = gμ−2 · pμ−1(X1)⊕ hμ−1(X2).

Fig. 2.3. Cascade realization for a function with column multiplicity µ = 3.

This circuit (Fig. 2.3) realizes f(X1, X2) when

hμ−1(X2) = f(|X1 ∈ Pμ−1),

hμ−2(X2) = f(|X1 ∈ Pμ−2)⊕ f(|X1 ∈ Pμ−1),

· · · = · · ·
h1(X2) = f(|X1 ∈ P1)⊕ f(|X1 ∈ P2),

h0(X2) = f(|X1 ∈ P0)⊕ f(|X1 ∈ P1),

where Pi denotes the set of vectors that produces the column
function qi(X2) (i = 0, 1, 2, . . . , μ− 1). �

Example 2.2 Consider the decomposition chart for the func-
tion f(X1, X2) shown in Fig. 2.4. Note that the column multi-

X1

0 0 1 1 x1

0 1 0 1 x2

0 0 1 0 0 0
X2 0 1 0 1 1 0

1 0 0 0 0 1
1 1 0 0 0 0
x3 x4 q0 q1 q2

Fig. 2.4. Decomposition chart of a logic function.

plicity μ is three. Thus, the function f(X1, X2) can be repre-
sented as

p0(X1)q0(X2)⊕ p1(X1)q1(X2)⊕ p2(X1)q2(X2),

where

p0(X1) = x̄1x̄2, q0(X2) = x̄3x̄4,
p1(X1) = x1 ⊕ x2, q1(X2) = x̄3x4,
p2(X1) = x1x2, q2(X2) = x3x̄4.

Consider the circuit in Fig. 2.3. It satisfies the following
relations:

g0 = h0(X2),

g1 = g0 · p1(X1)⊕ h1(X2),

g2 = g1 · p2(X1)⊕ h2(X2).

- 123 -

From these, we have

h2(X2) = q2(X2) = x3x̄4,

h1(X2) = q1(X2)⊕ q2(X2) = x̄3x4 ⊕ x3x̄4,

h0(X2) = q0(X2)⊕ q1(X2) = x̄3x̄4 ⊕ x̄3x4.

We can confirm that the circuit in Fig. 2.3 realizes the func-
tion f(X1, X2).

• When X2 = (1, 1), the output of p2 is 1, so the right AND
gate produces 0. So, the output g2 is

h2(X2) = q2(X2) = x3x̄4.

• When X2 = (1, 0) or X2 = (0, 1), the output of p1 is 1,
so the left AND gate produces 0. So, the output g2 is

h1(X2)⊕ h2(X2) = q1(X2) = x̄3x4,

• When X2 = (0, 0), all the outputs of pi are 0. Thus, the
signal pass through the cascade from the left to right, and
the output g2 is

h0(X2)⊕ h1(X2)⊕ h2(X2) = q0(X2) = x̄3x̄4.

Theorem 2.3 There exists an (n = 2m+1)-variable function
that cannot be realized by a single-rail cascade with (m+ 1)-
LUTs using the method shown in Fig. 2.1.

(Proof) An example for m = 2 is the majority function of
five variables. It cannot be realized by a single-rail cascade
with 3-LUTs. It can be verified by lutexact, a SAT based syn-
thesis program, in ABC [4]. However, such method is only
useful for the functions with a small number of inputs [13].
For larger n, we can prove as follows: Consider the function
of 2m+ 1 variables that can be written as

f(X) =
∑
⊕

i=0

xi1xi2 · · ·xim+1
,

the EXOR sum of all the products with degree m + 1. Note
that the circuit in Fig. 2.1 cannot produce the sum of all the
products with degree (m+ 1). �

III. DESIGN FOR SYMMETRIC FUNCTIONS

Theorem 3.1 Any symmetric function with 2m variables can
be represented by a single-rail cascade with 2m + 1 LUTs of
(m+ 1) inputs.

(Proof) Assume that X is partitioned into X1 =
(x1, x2, . . . , xm) and X2 = (xm+1, . . . , x2m). The column
multiplicity of the decomposition chart of the symmetric func-
tion f(X1, X2) is at most μ = m + 1. Thus, from Theorem
2.2, the necessary number of LUTs to realize the function is at
most 2m+ 1. �

Example 3.1 Consider the symmetric function of 6-variables:

f(X) = 1 ⇔
6∑

i=1

xi ≥ 4.

In this case, since m = 3, the function can be realized with
seven 4-LUTs. When the input variables are partitioned into
X1 = (x1, x2, x3) and X2 = (x4, x5, x6). We have the re-
duced decomposition chart shown Fig. 3.1, where the labels
show the numbers of 1’s in X1 and X2. Thus, the function
can be realized by the circuit shown in Fig. 2.1. Note that the
column for q0 shows the constant 0 function. So, if q0 and q3
are exchanged, the rightmost LUT can be removed. Thus, the
number of necessary LUTs can be reduced to 6. By the way,
the lutexact produced a solution with four 4-LUTs, which is
exact minimum.

X1

0 1 2 3
0 0 0 0 0

X2 1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

q0 q1 q2 q3

Fig. 3.1. Reduced decomposition chart for a 6-variable symmetric function.

Theorem 3.2 Any symmetric function of 8 variables can be
realized by a single-rail cascade with seven 6-LUTs.

(Proof) Partition the inputs X into X1 = (x1, x2, x3) and
X2 = (x4, x5, x6, x7, x8). Since the column multiplicity is at
most μ = 4, the number of LUTs is 2μ − 1 = 7. Also, the
number of inputs to an LUT is at most 6.

By the way, the lutexact command in abc produced solutions
with at most four 4-LUTs. �

IV. AD-HOC METHODS TO DERIVE SINGLE-RAIL
CASCADES

The design method in the previous sections is systematic.
That is, it always derives a circuit if a solution exists. Unfor-
tunately, it often requires more LUTs than necessary. In this
part, we show ad-hod methods, which can quickly derive a
solution with fewer LUTs.

Theorem 4.1 Any n-variable function can be realized by a
single-rail cascade with seven (n− 1)-LUTs, when n ≥ 5.

(Proof) Partition the inputs X into X1 = (x1, x2) and X2 =
(x3, x4, . . . , xn). Since the column multiplicity is at most μ =
4, the number of LUTs is 2μ− 1 = 7. �

Note that Theorem 4.1 cannot be used recursively.
In the following theorems, we can find more efficient cir-

cuits in special cases. Unfortunately, it is not systematic, so
we may miss a solution, even it exists.

- 124 -

Theorem 4.2 Let f be a n-variable function. Suppose that f
is written as

f(x1, X2) = x̄1f0(X2) ∨ x1f1(X2),

where X2 = (x2, x3, . . . , xn). If f1(X2) depends on up to
(n − 3) variables, then f can be realized by a single-rail cas-
cade of two (n− 1)-LUTs.

(Proof) Consider the circuit shown in Fig. 4.1, the first LUT
realizes f0(X2), while the second LUT realizes f1(X2) and
the multiplexer, which is denoted by a trapezoidal symbol.
When x1 = 0, the multiplexer selects the upper function f0,
while when x1 = 1, the multiplexer selects the lower func-
tion f1. Thus, the circuit realizes the given (n − 1)-variable
function. �

Application of Theorem 4.2 is easy.

Fig. 4.1. Single-rail cascade realization of a 7-variable function using two
6-LUTs.

Theorem 4.3 Let f be a n-variable function. Suppose that f
is written as

f(x1, X2) = x̄1f0(X2) ∨ x1f1(X2),

where X2 = (x2, x3, . . . , xn). If f1(X2) can be represented
as a product of two functions p(X2) and q(X2), and if p(X2)
and q(X2) depend on at most (n − 3) variables each, then f
can be realized by a single-rail cascade of three (n−1)-LUTs.

(Proof) Consider the circuit shown in Fig. 4.2. The first LUT
realizes f0(X2); the second LUT realizes p(X2) and the first
multiplexer; and the third LUT realizes q(X2) and the second
multiplexer and the AND gate. When x1 = 0, the output is
f0, while when x1 = 1, the output is p(X2)q(X2). Thus, the
circuit realizes the given n-variable function. �

In this case, f1(X2) = p(X2)q(X2) can depend on up to
6 variables, and f1(X2) has an AND bi-decomposition. An
algorithm to detect such decompositions is available.

V. EXPERIMENTAL RESULTS

A. 7 and 8 Variable Functions

Theorem 5.1 Any 7-variable function can be realized by a
single-rail cascade using five 6-LUTs.

Fig. 4.2. Single-rail cascade realization of a 7-variable function using three
6-LUTs.

(Proof) Let f(X1, X2) be a 7-variable function, where
X1 = (x1, x2) and X2 = (x3, x4, . . . , x7).

Consider the circuit shown Fig. 5.1, where g1 is a 6-variable
function such that g1 = x̄2h0(X2)⊕ x2h1(X2), while g2(X2)
and g3(X2) are 5-variable functions.

From the circuit, we have the following relations:
When X1 = (0, 0), f(0, 0, X2) = h0(X2)⊕g2(X2)⊕g3(X2).
When X1 = (0, 1), f(0, 1, X2) = h1(X2)⊕g2(X2)⊕g3(X2).
When X1 = (1, 0), f(1, 0, X2) = g3(X2).
When X1 = (1, 1), f(1, 1, X2) = g2(X2)⊕ g3(X2).

From these, we have the solutions for g1, g2 and g3.

g1(X2) = x̄2f(0, 0, X2)⊕ x2f(0, 1, X2)⊕ f(1, 1, X2),

g2(X2) = f(1, 0, X2)⊕ f(1, 1, X2),

g3(X2) = f(1, 0, X2).

Thus, any 7-variable function can be realized by a single-rail
cascade using five 6-LUTs. �

Fig. 5.1. Cascade realization for a 7-variable function.

Specifically, we have the following:

Conjecture 5.1 Most 7-variable functions can be realized by
single-rail cascades of three 6-LUTs.

(Explanations Supporting the Conjecture) We randomly
generated 10000 functions with n = 7 and u = 64 true
minterms. By using lutexact, all the functions were realized
by single-rail cascades with three 6-LUTs..

Since functions with u = 64 are considered as the most
complicated functions, we conjecture that most 7-variable
functions can be realized with three 6-LUTs. We did similar

- 125 -

experiments for different values of u, and had the same results.
Up to now, we have not encountered any 7-variable function
that requires more than three 6-LUTs. �

In a similar way to Theorem 5.1, we have the following:

Theorem 5.2 Any 8-variable function f(X) can be realized
by a single-rail cascade using 15 LUTs with 6-inputs.

B. Realization using lutexact

For different pairs of (n, u), we generated 100 random func-
tions, and applied lutexact [4]. To use lutexact, the number of
LUTs must be specified in advance [13]. The maximum com-
putation time for each function was set to 3600 seconds. We
used a computer with a Ryzen 5900HX CPU on ubuntu 24.04.2
LTS using 32 GB memory. Table 5.1 shows the numbers of
6-LUTs and the realized functions within an allocated time.
Currently, lutexact works for functions with up to n = 10
variables.

For n = 8, significant difference exist on the numbers of
LUTs derived by Theorem 5.2 and experimental results. Theo-
rem 5.2 shows that 15 LUTs are sufficient, while experimental
results show that 8 LUTs are sufficient for most functions.

TABLE 5.1
FRACTION OF FUNCTIONS REALIZED BY SINGLE-RAIL CASCADES.

n u 6-LUT Functions
8 30 4 100
8 40 4 87
8 50 5 100
8 60 6 *99
8 70 7 100
8 128 8 100
9 20 5 100
9 25 5 100

10 4 4 100
10 15 6 100
10 20 6 *98

n: the number of input variables.
u: the number of true minterms.

*: For the remaining functions, different SAT solver found
solutions in short time.

VI. CONCLUSION

This paper presented design methods for single-rail LUT
cascades. They are useful to design FPGAs with cascade mul-
tiplexer paths among LUTs. The main results are:

1. Any 2m-variable function can be realized by a single-rail
cascade with (m + 1)-LUTs. The number of LUTs is at
most 2m+1 − 1.

2. When a 2m-variable function has a functional decompo-
sition f(X1, X2), where X1 and X2 have m variables,
and the column multiplicity of the decomposition is μ,
the number of LUTs can be reduced to 2μ− 1.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI
Grant Number JP25K15045. The author thanks to Dr. Alan
Mishchenko who provided the author the latest version of lu-
texact, and important comments.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,” Inter-
national Symposium on the Theory of Switching, pp. 74-116, April
1957.

[2] H. A. Curtis, A New Approach to the Design of Switching Circuits, D.
Van Nostrand Co., Princeton, NJ, 1962.

[3] A. Mishchenko and T. Sasao, “Encoding of Boolean functions and its
application to LUT cascade synthesis,” IWLS-2002, pp. 115-120, New
Orleans, June 5, 2002.

[4] A. Mishchenko, “ABC: A system for sequential synthesis and verifi-
cation,” Available online: http://www.eecs.berkeley.edu/ alanmi/abc/
(accessed on July 21, 2025).

[5] K. K. Maitra, ”Cascade switching networks of two-input flexible
cells,” IRE Trans. Electron. Comput., EC-11, pp. 136-143, 1962.

[6] A. Mukhopadhay and H. S. Stone, “Cellar logic,”in A. Mukhopadhyay
(ed.), Recent Developments in Switching Theory, Academic Press,
New York, 1971.

[7] H. Nakahara and T. Sasao, “A PC-based logic simulator using a look-
up table cascade emulator,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, Vol. E89-A,
No.12, Dec. 2006, pp. 3471-3481.

[8] K. Nakamura, et.al, “A memory-based programmable logic device
using look-up table cascade with synchronous static random access
memories,” Japanese Journal of Applied Physics, Vol. 45, No. 4B,
2006, April, 2006, pp. 3295-3300.

[9] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[10] T. Sasao, “Design methods for multi-rail cascades,” 5-th International
Workshop on Boolean Problems, Sept. 20, 2002, Freiberg. (invited
talk).

[11] T. Sasao and A. Mishchenko,“LUTMIN: FPGA logic synthesis with
MUX-based and cascade realizations,” IWLS-2009, Berkeley, CA,
U.S.A., July 31-Aug. 2, 2009, pp.310-316.

[12] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[13] T. Sasao, “Statistical method to estimate the number of LUTs to re-
alize sparse logic functions,” International Workshop on Logic and
Synthesis, Verona, Italy, June 13, 2025.

[14] H. S. Stone and A. J. Korenjak, “Canonical form and synthesis of
cellular cascades,” in IEEE Transactions on Electronic Computers,
vol. EC-14, no. 6, pp. 852-862, Dec. 1965.

[15] A. Suzuki, S. Noguchi, and J. Oizumi, “The capability of Boolean
functions realization by the (m + 1, 1)-type multi-stage logical net-
works,” (in Japanese), IEICE, Vol. 52-C, No.8, pp, 459-486, March
1969.

[16] AMD, Versal ACAP Configurable Logic Block Architecture Manual
(AM005), https://docs.amd.com/r/en-US/am005-versal-clb/Look-Up-
Table (accessed on July 21, 2025).

- 126 -

