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Abstract—This paper proposes a method for imple-

menting interrupt handling in the context of a fully

hardware-implemented RTOS-based system. To en-

hance the responsiveness of real-time systems, previ-

ous research by Oosako et al. has explored the com-

plete hardware implementation of RTOS function-

alities and tasks. Ando has proposed an architec-

ture that enables task hardwareization using general-

purpose high-level synthesis; however, this approach

does not address interrupt handling. In this paper, we

present a hardware implementation of alarm handlers,

cyclic handlers, and interrupt handlers. Each handler

is associated with a dedicated timer that counts down

and triggers the handler when the counter reaches

zero, thereby simplifying the control logic. The inter-

rupt handler is designed to accelerate activation by

evaluating invocation conditions in parallel. Service

calls related to handlers are implemented by updating

or referencing specific status registers. Experimen-

tal results demonstrate that, in the proposed RTOS

hardware, alarm and interrupt handlers can be trig-

gered within 1 and 2 cycles, respectively, after their

conditions are satisfied. Furthermore, all service calls

related to handlers can be executed within 5 cycles.

I. Introduction

Recent advances in information and communication
technology have led to the rapid development of new ser-
vices and devices. As a result, embedded systems are
increasingly required to support more advanced and so-
phisticated functionalities. In particular, systems used
in automotive equipment and unmanned aerial vehicles
demand not only functionality but also strict real-time
performance. Such systems are typically designed us-
ing a real-time operating system (RTOS), which provides
mechanisms to ensure that processing in response to input
events is completed within a defined time frame. However,
achieving real-time performance is becoming increasingly

challenging as system complexity grows.

One common approach to improving the responsiveness
of RTOS-based systems is to implement RTOS function-
alities in hardware. For example, references [1, 2] propose
hardware implementations of the RTOS scheduler, while
[3, 4] implement the entire RTOS in hardware. How-
ever, in these approaches, tasks and handlers remain as
software components, and therefore issues such as CPU
waiting and context-switching overhead are not fully ad-
dressed.

In contrast, the approach presented in [5] proposes im-
plementing not only the RTOS functionalities but also all
tasks in hardware. In this method, tasks are executed
in parallel as independent hardware modules, eliminat-
ing CPU waiting and context-switching overhead. Ando
et al. [6] further proposed an architecture and method for
generating task hardware modules from source code using
general-purpose high-level synthesis tools. Additionally,
[7] presents hardware implementations of RTOS services
such as mutexes and data queues. However, these studies
focus solely on user tasks, and do not address support for
external or timer-based interrupts.

This paper extends the architecture proposed in [6] by
introducing methods to implement alarm handlers, cyclic
handlers, and interrupt handlers entirely in hardware. By
assigning a dedicated timer to each handler, the control
logic for alarm and cyclic handlers is simplified. Service
calls related to handlers are implemented through updates
or references to associated status registers.

The extended RTOS hardware, designed based on the
proposed method, achieves fast response times: alarm
and interrupt handlers are triggered in 1 and 2 cycles, re-
spectively, after their activation conditions are met. Fur-
thermore, all service calls related to handlers can be exe-
cuted within 5 cycles. Logic synthesis targeting the Xil-
inx Artix-7 FPGA revealed that a configuration with four
tasks and one instance of each handler type requires 1,727
LUTs—approximately a 1.52 times increase compared to
a configuration without handling support.
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The remainder of this paper is organized as follows.
Chapter 2 first discusses the hardware implementation
and architectural design of RTOS-based systems, then
provides an overview of handlers in RTOS. Chapter 3 de-
tails the implementation methods for alarm, cyclic, and
interrupt handlers, along with the hardware realization of
service calls related to these handlers. Chapter 4 presents
an evaluation of the proposed approach in terms of circuit
area, handler response cycles, and the execution cycles of
service calls.

II. Full Hardware Implementation of
RTOS-Based Systems

A. Full Hardware Implementation of RTOS-Based Sys-
tems

Oosako et al. proposed a method for implementing both
RTOS functionalities and all tasks/handlers entirely in
hardware [5]. The concept is illustrated in Fig. 1. The
upper part of the figure shows a system where an RTOS
and tasks (TSKi) are implemented in software, with tasks
executed by a CPU under the management of the RTOS.
The lower part shows the entire system implemented in
hardware. Each task (TSKi) is synthesized as an indepen-
dent hardware module using high-level synthesis. The
manager module provides the RTOS functions as hard-
ware and offers task execution control, as well as inter-task
synchronization and communication mechanisms such as
mutexes and data queues.
In this system, since all tasks in the ready state are ex-

ecuted in parallel, there is no CPU waiting nor context-
switching overhead. Since the scheduling function is re-
duced to the simple task of sending execution signals to
tasks in the ready state, the scheduling overhead is mini-
mized. Furthermore, by implementing tasks in hardware,
they can be executed at high speed, significantly improv-
ing the system’s responsiveness.
Although this approach is generally applicable only to

systems with up to approximately 16 tasks due to the
impracticality of implementing a large number of tasks
in hardware in terms of circuit area, it can dramatically
improve the system’s response performance.

B. Architecture by Ando and Muguruma

In contrast to the approach in [5], where the RTOS
service routines linked to tasks were synthesized into
hardware using a proprietary binary synthesis system,
Ando and Muguruma proposed an architecture where the
RTOS service routines are implemented within the man-
ager hardware module, significantly reducing circuit size
and improving execution speed [6]. They also developed
an architecture that enables the hardware synthesis of
tasks using general-purpose high-level synthesis tools.
This paper adopts the architecture proposed in [6] as

a premise. Fig. 2 shows this architecture. TSK0 to TSK2

DMEM
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TSK2 TSK3

Fig. 1. Full hardware implementation of RTOS-based system [5]

represent the tasks, and the manager module implements
the RTOS functionalities in hardware. Located below the
manager are the service modules including control, shared
variable, data queue, event flag, and mutex, which provide
various services. Among these, the control module han-
dles service calls for updating task states and priorities. In
this architecture, accesses to shared variables are treated
as services and processed by the shared variable module.
The tsk status register holds the states and priorities of
each task (the states of the kernel are kept in the global
status register in the control module).

While all ready tasks are executed in parallel, service
calls are processed sequentially to avoid interference be-
tween services. In such cases, the task with the highest
priority is selected by the Request Arbiter (RA) and ex-
ecuted. The wait register manages which task is waiting
for which service.

A task (TSKi) requests a service by writing the service
number to the control register TFi and the required argu-
ments to TAi. The RA references the states of the request-
ing tasks and performs arbitration, writing the selected
task number, service number, and necessary arguments
to the XT, XF, and XAj registers, respectively. The ser-
vice module responsible for the service number written to
XF processes the request and writes the return value to
the XA0 register. Once the return value is written, the
manager writes the value from XA0 to TAi and notifies the
task of service completion. Upon receiving this notifica-
tion, the task resumes its processing. The implementation
of the service modules is described in detail in [7, 8].

C. Handlers

Handlers are routines executed when specific events or
conditions occur. In this paper, we focus on alarm han-
dlers, cyclic handlers, and interrupt handlers.

An alarm handler is executed once after a specified time
has elapsed since it was started. A cyclic handler is ex-
ecuted repeatedly at a specified time interval after being
started.
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Fig. 2. Architecture proposed in [6]

An interrupt handler is executed when a signal is sent to
the IRQ (Interrupt Request) port or when it is explicitly
triggered by a task. However, the execution of an inter-
rupt handler is delayed if the kernel has globally disabled
interrupts (interrupt lock flag is set), or if the specific
interrupt has been disabled (interrupt lock flag for that
interrupt is set). Additionally, each interrupt is assigned
a priority, and if this priority is lower than the system’s
interrupt priority mask, the execution is also delayed.
Handlers, like tasks, have execution priorities, but they

always have higher priorities than tasks. If multiple time
events or interrupts occur simultaneously, the handler or
event with the highest priority is executed first.
The control and status referencing of handlers are per-

formed via service calls, which can be invoked from tasks
or other handlers. For example, in TOPPERS/ASP31,
the service calls listed in Table I are defined. For alarm
and cyclic handlers, as shown in (a) and (b), service calls
allow the initiation with a specified time, termination, and
status referencing.
For interrupt handlers, as shown in (c), service calls

allow tasks to request or clear interrupts, enable or disable
interrupts, and set or reference interrupt priorities.

III. Hardware Implementation of Interrupt
Handling

A. Overview

In this paper, we present implementation of interrupt
handling mechanisms within the RTOS hardware archi-
tecture proposed in [6]. The target handlers include alarm
handlers, cyclic handlers, and interrupt handlers. Similar
to tasks, each handler is synthesized as an independent
hardware module using a high-level synthesis (HLS) sys-
tem. The execution of these handlers is handled in the
same manner as tasks.
For the alarm and cyclic handlers, each handler is

equipped with its own dedicated timer, which simplifies

1https://www.toppers.jp/

TABLE I
Service calls related to handlers

(a) Service calls for alarm handlers

sta alm(ID alm,
RELTIM tim)

Starts alarm notification alm so that the handler
is triggered after tim has elapsed.

stp alm(ID alm) Stops alarm notification alm.

ref alm(ID alm) References the status of alarm notification alm.

(b) Service calls for cyclic handlers

sta cyc(ID cyc) Starts cyclic notification cyc.

stp cyc(ID cyc) Stops cyclic notification cyc.

ref cyc(ID cyc) References the status of cyclic notification cyc.

(c) Service calls for interrupt handlers

ras int(ID it) Requests interrupt it.

clr int(ID it) Clears the request for interrupt it.

dis int(ID it) Disables interrupt it.

ena int(ID it) Enables interrupt it.

prb int(ID it) References the request status of interrupt it.

chg ipm(PRI pri) Updates the interrupt priority mask to pri.

get ipm(PRI *p pri) References the interrupt priority mask.

the control logic for their activation. This approach en-
sures that the management of the handler’s activation can
be performed independently, without the need for com-
plex centralized control.
For interrupt handlers, the evaluation of activation con-

ditions is performed in parallel, allowing for faster invo-
cation of the handler upon the occurrence of an interrupt.
The activation control for these handlers is managed by
both the manager module and the control module.
Furthermore, the processing of service calls related to

handlers―such as setting the activation conditions for
alarm, cyclic, and interrupt handlers from tasks―is im-
plemented in hardware by directly updating or referencing
the status registers and timer values associated with each
handler. This method ensures efficient and deterministic
execution of handler-related service calls.

B. Control of Alarm Handlers

In this paper, unlike conventional software implemen-
tations, each alarm handler is equipped with a dedicated
timer. The timer is initialized by a service call that ac-
tivates the alarm. The manager module decrements the
timer at every clock cycle, and when the timer reaches
zero, the handler’s state is transitioned to an executable
state.
Table II shows the information stored in the status reg-

isters of the alarm handler. The almstat register is a
status flag indicating whether the alarm is active; it is
set to 1 when the alarm is triggered. The almpri regis-
ter holds the priority of the handler. The almtim register
is a countdown timer representing the relative time until
notification, which is decremented every clock cycle while
almstat is set to 1. The alm handlerstat register indi-
cates the execution state of the handler.
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TABLE II
Status registers of alarm handler

Variable Name Description

almstat Alarm status flag

almpri Alarm handler priority

almtim Relative time until notifica-
tion

alm handlerstat Execution state of the alarm
handler

The operational flow of the alarm handler is as follows.
The manager module controls the alarm and alarm han-
dler, while the control module processes service calls re-
lated to the handler.

0) In the initial state, almstat is set to 0,
alm handlerstat is in the Dormant (DMT) state,
and almpri stores the handler’s priority.

1) When a task calls sta alm(alm, tim) to start the
alarm, the control module sets almstat to 1 and ini-
tializes almtim with the specified tim value.

2) The manager module decrements almtim at every
clock cycle while almstat is 1.

3) When almtim reaches zero, the manager transitions
alm handlerstat to the Running state and resets
almstat to 0.

4) Upon completion of the handler’s execution, the
alarm handler sets a completion flag to notify it to
the manager.

5) The manager transitions alm handlerstat back to
the Dormant state.

6) The alarm returns to its initial state.

C. Control of Cyclic Handlers

The control of cyclic handlers is similar to that of alarm
handlers. The primary difference is that when the count-
down timer reaches zero, the handler not only transitions
to the running state but also has its timer automatically
reloaded with the predefined cycle period. This reloading
process continues repeatedly until a service call to stop the
cyclic handler (stp cyc) is issued, at which point both the
status flag and the timer reset flag are cleared.
Table III lists the information stored in the status reg-

isters of each cyclic handler. Similar to alarm handlers,
these registers include the status flag, priority, relative
time, and execution state of the handler. Additionally, a
flag named cyc reset is introduced to control the auto-
matic reloading of the cycle period. When cyc reset is
set to 1 and cyctim reaches zero, the cyc handlerstat is
transitioned to the running state, and cyctim is reloaded
with the predefined cycle period.

TABLE III
Status registers of cyclic handler

Variable Name Description

cycstat Status flag for cyclic notifica-
tion

cycpri Priority of the cyclic handler

cyctim Relative time until the next
cyclic notification

cyc reset Timer reset flag

cyc handlerstat Execution state of the cyclic
handler

D. Control of Interrupt Handlers

The interrupt handler transitions to the running state
either upon receiving an IRQ (interrupt request) signal
from the external port or upon an interrupt request ser-
vice call by a task. The status registers associated with
each interrupt handler are summarized in Table IV.
The priority and execution state of the interrupt han-

dler are managed similarly to other types of handlers.
The intstat register serves as the interrupt request flag,
which is set when an interrupt request is issued. The
int locked register is an interrupt lock flag; when this
flag is set to 1, the interrupt handler cannot transition to
the ready or running state.
The operational flow of the interrupt handler is as fol-

lows:

0) In the initial state, intstat is 0, int locked is 0,
and int handlerstat is set to Dormant (DMT). The
intpri register stores the priority of the interrupt
handler.

1) When the IRQ signal is received or a task issues
an interrupt request by invoking ras int(intid),
intstat is set to 1.

2) The manager module evaluates whether all of the
following conditions are satisfied:

• int locked is 0.

• The priority of the interrupt handler is higher
than the interrupt priority mask value.

• The global interrupt lock flag is 0.

• The CPU lock flag is 0.

3) If all the above conditions are met, the manager tran-
sitions int handlerstat to the running state and re-
sets intstat to 0.

4) Upon completion of the handler’s execution, the han-
dler sets a completion flag and notifies the manager.

5) The manager transitions int handlerstat back to
the dormant state.

6) The handler returns to the initial state.
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TABLE IV
Status registers of interrupt handler

Variable Name Description

intstat Interrupt request flag

intpri Interrupt priority

int locked Interrupt lock flag

int handlerstat Execution state of the inter-
rupt handler

E. Hardware Implementation of Service Calls

Service calls related to alarm handlers, cyclic handlers,
and interrupt handlers are processed by the control mod-
ule, which is responsible for the execution control of tasks.
The basic processing involves simple referencing or updat-
ing of the handlers’ status registers, allowing all service
calls to be completed within a single cycle (including ser-
vice call invocation overhead, the total processing time is
five cycles).
The processing for service calls related to alarm han-

dlers is shown in Table V(a). Here, out i denotes the
output port of the control module, where the returned
values are sent back to the task. The sta alm call sets
almstat to 1 and assigns the specified value to almtim.
The stp alm call resets almstat to 0. The ref alm call
outputs the current values of almstat and almtim to the
output ports for reporting to the manager module.
Similarly, Table V(b) shows the processing for service

calls related to cyclic handlers. The behavior is mostly
the same as that of alarm handlers; however, in the cases
of sta cyc and stp cyc, the cyc reset flag is set to 1
and 0, respectively, to control the automatic resetting of
the cycle timer.
Table V(c) illustrates the processing of service calls re-

lated to interrupt handlers. The ras int and clr int

calls set and reset intstat, respectively. The dis int

and ena int calls set and reset int locked, respectively.
The prb int call outputs the value of intstat to the out-
put port for reporting to the manager. The chg ipm call
assigns the specified priority value to the global interrupt
priority mask register intpri mask, while the get ipm

call outputs the current value of intpri mask to the out-
put port.
Upon receiving a service call request, the control mod-

ule determines the appropriate output and the required
updates to the status registers of each handler. It then
communicates these changes to the manager, which ap-
plies them to the respective status registers, thereby com-
pleting the service call processing in hardware.

IV. Implementation and Evaluation Results

Based on the proposed method, the manager module
was designed using Verilog HDL and synthesized targeting
the Xilinx FPGA Artix-7 (xc7a100tcsg324-3) using Xilinx
Vivado 2023.2.
The logic synthesis results of the manager module are

shown in Table VI. In the column #task/handler, tsk,

TABLE V
Service call processing for handlers

(a) Service calls for alarm handlers

sta alm(ID alm,

RELTIM tim)

almstat <= 1, almtim <= tim

stp alm(ID alm) almstat <= 0

ref alm(ID alm) out 1 <= almstat, out 2 <= almtim

(b) Service calls for cyclic handlers

sta cyc(ID cyc) cycstat <= 1, cyctim <= tim

cyc reset <= 1

stp cyc(ID cyc) cycstat <= 0, cyc reset <= 0

ref cyc(ID cyc) out 1 <= cycstat, out 2 <= cyctim

(c) Service calls for interrupt handlers

ras int(ID it) intstat <= 1

clr int(ID it) intstat <= 0

dis int(ID it) int locked <= 1

ena int(ID it) int locked <= 0

prb int(ID it) out 1 <= intstat

chg ipm(PRI pri) intpri mask <= pri

get ipm(PRI *p pri) out 1 <= intpri mask

alm, cyc, and int represent the number of tasks, alarm
handlers, cyclic handlers, and interrupt handlers, respec-
tively. #LUT denotes the number of lookup tables, and
delay indicates the critical path delay. In this experiment,
manager module only implements the control module as
the service module and does not include modules such as
mutexes or event flags. The circuit size is approximately
proportional to the total number of tasks and handlers
(232.1 LUTs per task/handler). Although the critical
path delay slightly increases as the number of tasks and
handlers increases, it remains under 10 ns.

The response cycles of the handlers are presented in
Table VII. For alarm and cyclic handlers, the response
cycle refers to the number of cycles from the timer reach-
ing zero until the handler begins execution. For interrupt
handlers, it refers to the number of cycles from when an
interrupt signal is input to the IRQ port until the han-
dler begins execution. Alarm and cyclic handlers can
be invoked in 1 clock cycle, while interrupt handlers are
invoked in 2 clock cycles, demonstrating extremely low-
latency handler activation.

Table VIII shows the response cycles for service calls
related to handlers. These represent the number of cycles
from when a task or handler issues a service call to the
point it receives a return value, assuming the call is pro-
cessed without being delayed by other tasks or handlers.
All service calls can be completed within 5 clock cycles,
achieving very high-speed execution.
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TABLE VI
Logic synthesis results of the manager module

#task/handler #LUT delay [ns]

tsk×8 1,828 5.367

tsk×8, cyc×1 1,857 5.154

tsk×8, cyc×2 2,310 5.228

tsk×8, cyc×4 2,731 5.282

tsk×8, alm×1 2,003 5.192

tsk×8, alm×2 2,705 5.142

tsk×8, alm×4 3,052 5.583

tsk×8, int×1 1,844 5.374

tsk×8, int×2 2,348 5.398

tsk×8, int×4 2,844 5.303

tsk×8, alm×1, cyc×1, int×1 2,354 5.152

tsk×8, alm×2, cyc×2, int×2 3,554 5.856

TABLE VII
Response cycles of handlers

Handler #Cycle

Alarm handler 1

Cyclic handler 1

Interrupt handler 2

V. Conclusion

In this paper, we have proposed a method for im-
plementing interrupt handling in the context of fully
hardware-implemented RTOS-based systems. The pro-
posed approach includes the hardware implementation of
the control mechanisms for alarm handlers, cyclic han-
dlers, and interrupt handlers, as well as the service calls
associated with these handlers. Although the circuit size
of the management hardware (manager) increases ap-
proximately in proportion to the number of tasks and
handlers, both interrupt activation and service call pro-
cessing can be executed with extremely low latency.
As future work, we plan to develop a system that auto-

matically synthesizes the entire hardware from the source
code of tasks and handlers, and to explore the application
of the proposed method to practical use cases.
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TABLE VIII
Response cycles of service calls

Service Call #Cycle

sta alm 5

stp alm 5

sta cyc 5

stp cyc 5

ras int 5

clr int 5

dis int 5

ena int 5

chg ipm 5
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