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Abstract— Convolutional neural networks are widely used to
implement machine learning such as image recognition. BNNs,
which binarize data and convolution weights, are advantageous
in terms of reducing power consumption and miniaturizing im-
plementations. In this paper, a method to reduce the number of
registers required to store data and weights in LSI implementa-
tions of BNNs is proposed using the register bridge architecture.
The number of register bits was reduced by 44% compared to
using the conventional architecture.

I. I NTRODUCTION

In recent years, the application of machine learning has been
attracting attention. In particular, convolutional neural net-
works (CNNs) are widely used in the field of image recog-
nition [1]. CNNs are composed of an input layer, convolution
layers, pooling layers, fully connected layers, and an output
layer. In the convolution layer, convolution calculations using
input data and weight coefficients called kernel are repeatedly
performed, which is actually a product-sum calculation. This
convolution calculation can be processed in parallel on an LSI.

Typically, the input data and kernels required for CNN con-
volution calculations are large, making it difficult to store all of
the data in the on-chip memory inside the LSI. Therefore, ex-
ternal memory must be provided, and calculations must be per-
formed while communicating appropriately between the LSI
and the external memory. In this case, communication between
the LSI and the external memory causes significant delays and
power consumption, so a calculation execution method that
minimizes inter-chip communication is required [2].

It is known that in CNNs, inference accuracy does not much
decrease even if the number of bits used to represent input
data and kernels is reduced. CNNs that limit both input data
and kernels to 1-bit binary values are called binarized NNs
(BNNs). In BNNs, the product of input data and kernels can be
calculated using a simple exclusive OR (XNOR) circuit rather
than a multiplication circuit [3].

As architectures suitable for parallel calculations for LSIs,
the regularly distributed register (RDR) architecture [4], in
which processing elements (PEs) are regularly arranged, and
the register bridge (RB) architecture [5], in which registers
called bridge registers (BREGs) are provided between PEs,
have been proposed. Compared to the RDR architecture, the
RB architecture has the advantage of reducing data communi-
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Fig. 1. Operation and communication time chart for LSI implementation. (a)
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Fig. 2. Parallel LSI architectures. (a)RDR. (b)RB

cation time and reducing the number of register bits by sharing
data between PEs using BREGs.

In this paper, we propose an LSI implementation targeting
the RB architecture of a BNN that takes communication with
external memory into consideration. In particular, we propose
a method that takes advantage of the feature of the RB archi-
tecture that allows data sharing between adjacent PEs to trans-
mit input data and kernels to PEs with fewer register bits than
the RDR architecture and execute convolution calculations in
BNN in parallel.

The remainder of the paper is organized as follows. The
RB architecture is briefly explained in Sect. 2. Consideration
in hardware implementation of BNN is presented in Sect. 3.
The proposed method is described in Sect. 4 and evaluated in
Sect. 5. Section 6 concludes the work.

II. REGISTER-BRIDGE ARCHITECTURE

LSIs consist of functional units (FUs), registers, control cir-
cuits, and so on. When many FUs and registers are placed
randomly on an LSI chip, long-distance communication on the
chip is required as the LSI becomes larger, and the commu-
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nication delay increases. In clock-synchronized processing, if
long-distance communication is required within one clock pe-
riod, the clock period must be extended to match the longest
communication delay in order to execute the processing cor-
rectly as shown in Fig. 1(a). Even if the operation to generate
a data and the operation to consume the data are placed close
to each other on the chip and the required communication time
is short, operations must be synchronized with a clock signal,
resulting in unnecessary waiting time before the operation to
consume the data can begin execution as shown in Fig. 1(a).
Hence the processing time derived as the product of the clock
period and the number of clock cycles (CCs) is increased.

The regular distributed register (RDR) architecture [4]
shown in Fig. 2(a) has been proposed as a parallel process-
ing architecture for LSI. In the RDR architecture, multiple
PEs containing FUs, registers, and control circuits (FSM) are
placed in a regular manner, and the operations in the given
processing are executed in parallel by the multiple PEs. Com-
munication within one CC is limited to between the FUs and
registers in the same PE. Data reading from registers, commu-
nicating the data to FUs in the same PE, and communicating
and storing the calculation results to registers in the same PE
are performed within one CC. Registers in a PE are called local
registers (LREGs). Communication between PEs is performed
using a CC dedicated to communication that does not involve
calculation on FUs, and communication within one CC is lim-
ited to adjacent PEs. A long distant communication is per-
formed using multiple CCs by repeating communication be-
tween adjacent PEs. This shortens the communication distance
within one CC, shortens the clock period, and reduces the pro-
cessing time as shown in Fig. 1(b).

Instead of wiring between adjacent PEs in the RDR archi-
tecture, the register bridge (RB) architecture [5] is proposed,
in which registers are placed between adjacent PEs as shown
in Fig. 2(b) and the registers can be read and written from
both adjacent PEs. The registers are called bridge registers
(BREGs). Data reading from LREG or BREG, executing cal-
culation on FUs in the same PE, and storing the calculation re-
sults to LREG or BREG are performed within one CC. There
is no significant difference between the communication time
between adjacent BREGs and FUs and between LREGs and
FUs, and the shortest clock cycles of the RDR and RB archi-
tectures are considered to be equivalent. Communication be-
tween distant PEs is performed by repeating communication
between BREGs using multiple CCs. The data to be commu-
nicated to another PE is stored in an appropriate BREG rather
than LREG, hence the required number of CCs for communi-
cation is the same or less than the RDR architecture.

Another advantage of the RB architecture is that it is possi-
ble to share data between adjacent PEs using the BREG. When
adjacent PEs use the same data, the RDR architecture requires
each PE to store the data in the LREG in duplicate. On the
other hand, in the RB architecture, since the PEs on both sides
of the BREG can read data directly from the BREG, the num-
ber of register bits required to hold the data can be reduced by
storing commonly used data in the BREG.
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Fig. 3. Convolution and its implementation in BNNs. (a) convolution. (b) a
1-bit product.

for( kx=0 ; kx<K ; kx++ )
for( ky=0 ; ky<K ; ky++ )

for( ni=0 ; ni<IN ; ni++ )

for( x=0 ; x<OW ; x++ )
for( y=0 ; y<OH ; y++ )

for( no=0 ; no<OUT ; no++ )

s(no,x,y) += ai(ni,x+kx,y+ky)*w(ni,no,kx,ky)

Loop-4
Loop-3y
Loop-3x

Loop-2
Loop-1y
Loop-1x

s(no,x,y) = 0

ao(no,x,y) = f(s(no,x,y)+bias(no))

generate 3D output

3D sum of
products

Fig. 4. Pseudocode for convolution layer calculation.
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Fig. 5. Loops in convolution.

III. H ARDWARE IMPLEMENTATION OF BNNS

A. Convolution operation in BNNs

The convolution operation of kernel sizeM is illustrated in
Fig. 3(a). M inputs andM weights in the fist layer orM acti-
vations andM weights in the second and later layers are mul-
tiplied one by one to getM products and these products are
summed up. In BNN, the input/activation and weight take only
two values, ‘+1’ and ‘−1’, and the combination of the values
of input/activationa, weightw, and their arithmetic productp
are shown in the left half of Fig. 3(b). When the logic val-
ues 1 and 0 are assigned to ‘+1’ and ‘−1’, respectively, the
truth table of the multiplication is as shown in the right half
of Fig. 3(b). This means that the 1-bit multiplication in BNNs
can be performed by the inversion of the exclusive OR ofa
andw. That is, the 1-bit product can be obtained by an XNOR
operation.

B. 4 level nested loops in the convolution

The computation in the convolution layer of CNN consists
of four levels of nested loops, as shown in the pseudocode
in Fig. 4. The four-level loops are illustrated in Fig. 5. In
Fig. 5, the convolution calculation proceeds by sliding the ker-
nel against the input and repeating the multiply-add calcula-
tion between the corresponding input region and the kernel.
The roles of each of the four loops are as follows. Loop-1
(Loop-1x, Loop-1y) corresponds to the vertical and horizontal
directions of the kernel, Loop-2 corresponds to the depth direc-
tion of the input, Loop-3 (Loop-3x, Loop-3y) corresponds to
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the vertical and horizontal directions of the output, and Loop-4
corresponds to the depth direction of the output. By unrolling
these four levels of loops, the convolution calculation can be
executed in parallel on an LSI. Unrolling a loop to perform
n iterations simultaneously in parallel is defined asn-step un-
rolling of the loop, or it is denoted as the loop isn-step un-
rolled.

C. Loop unrolling for parallel computation

Figure 6 shows the input data and kernel area that are used in
the calculations per clock cycle (CC) in a PE when Loop-1 and
Loop-2 are unrolled. When both Loop-1 and Loop-2 are not
unrolled, one piece of data is calculated per CC, as shown in
the top part of Fig. 6. When Loop-1 is unrolled, the calculation
area per CC increases in the vertical and horizontal directions
of the kernel, as shown in the middle part of Fig. 6. When both
Loop-1 and Loop-2 are unrolled, the calculation area increases
not only in the vertical and horizontal directions of the kernel,
but also in the depth direction of the kernel, as shown in the
bottom part of Fig. 6. Here, the operations for unrolled Loop-1
and 2 are performed in parallel by preparing multiple FUs in a
PE.

Figure 7 shows the input data and kernel area that are the
subject of calculation per CC when Loop-1 and 2 are unrolled,
and then Loop-3 and 4 are unrolled. The top of Fig. 7 corre-
sponds to the case where only Loop-1 and 2 are unrolled as
shown in the bottom of Fig. 6, and Loop-3 and 4 are not un-
rolled. When Loop-3 is unrolled, calculations are performed
using the same kernel for different input data, as shown in the
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Fig. 9. Parallelized computation of convolution on RB architecture.

middle of Fig. 7. Here, Loop-3 is 2-step unrolled, and two PEs
perform calculations in parallel using a common kernel for dif-
ferent input data. When both Loop-3 and 4 are unrolled, as
shown in the bottom of Fig. 7, multiple kernels are used for the
calculation using a common input. Here, Loop-3 and Loop-
4 are each 2-step unrolled, and calculations are performed in
parallel using four PEs. In the figure, two PEs arranged hori-
zontally each perform calculations using the same input data,
and two PEs arranged vertically each perform calculations us-
ing the same kernel.
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IV. T HE PROPOSEDMETHOD

The proposed method of performing convolution calcula-
tions in binarized CNN on an LSI of the RB architecture is
described.

A. Unrolling the loops for convolution
In the proposed method, the loops for convolution are un-

rolled as follows. Loop-1 is completely unrolled. Loop-2 is
partially unrolled, and each iteration of the partially unrolled
Loop-2 is shown as D=0, D=1, and so on as shown in Fig. 8.
Loop-3 is partially unrolled horizontally and vertically. Loop-4
is not unrolled, but iterations in Loop-4 are executed concur-
rently. By using the input data and two kernels W0 and W1

shown in Fig. 8 as an example, how the convolution is per-
formed is explained as follows.

Figure 9 shows how the input data and the two kernels are
stored in the BREG when convolution calculations are per-
formed in parallel on the RB architecture. The input data and
kernels are transferred on the BREG from right to left in Fig. 9
every time a clock cycle passes. Here, the vertical and hori-
zontal sizes of the kernel are both 3, thus 6 columns of input
data are placed in the BREG on the right end, and the required
columns of input data are transferred to the left. The PE ex-
ecutes the multiply and accumulate (MAC) calculation when
the input data and the kernel required for the calculation are
available in the adjacent BREGs.

In Figure 9, the kernel given to the rightmost PE is W0 for
CC 0 and W1 for CC 1. Using two consecutive CCs, input data
corresponding to the same D value is repeatedly used to calcu-
late two outputs corresponding to each of the two kernels. Fur-
thermore, the input data and kernels given from BREG switch
as D=0, D=1,. . . every two CCs. In this way, Loop-2 of the
MAC calculations proceed in each PE.

When the convolution calculation is performed using the
method illustrated in Fig. 9, the number of bits of the reg-
ister holding the intermediate result of MAC calculation, the
on-chip buffer capacity, and the number of bits read from the
external memory change depending on the combination of the
execution methods of Loop-3 and Loop-4. Each item is con-
sidered below.

A.1. Register for intermediate result of multiplication and ac-
cumulation calculation

In the MAC calculation of input data and kernels, the calcula-
tion for two kernels is performed alternately, that is, for kernel
W0 and D=0, for kernel W1 and D=0, W0 and D=1, W1 and
D=1, and so on. In other words, the MAC calculation for W0

and the MAC calculation for W1 are performed concurrently
using the same PE in a time-sharing manner. Therefore, it is
necessary to store the intermediate MAC calculation results for
each kernel in a separate register as shown in Fig. 10. The ker-
nel size, i.e., the number of weights in one kernel, isNk. In a
binarized NN, the maximum value of the MAC calculation re-
sult isNk, and the number of bits required for the registerB is
dlog2(Nk +1)e. When calculatingQ kernels concurrently, the
total number of bits required for the registers to store the MAC
calculation results isQB. This is required for each PE.

input kernel

XNOR

popcount

REG

REG
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Q regs

Fig. 10. FUs for MAC calculation and registers for the intermediate results in
PE.
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TABLE I
THE BITS OF REGISTERS, ON-CHIP BUFFER, AND MEMORY READ

# kernels ACC regs On-chip buf Kernel Read Input Read
Q [bit] [bit] [kbit] [Mbit]
1 264 1152 73.73 33.55
2 528 2304 73.73 16.78
3 792 3456 73.73 11.18
4 1056 4608 73.73 8.39

A.2. The size of on-chip buffer

Input data and kernels are stored in external memory, and as
shown in Fig. 11, data required for calculation is read from
external memory and provided to the PE via inter-chip com-
munication. Storing repeatedly used data in an on-chip buffer
reduces the amount of data reads from external memory. In
other words, the on-chip buffer acts as a cache.

Considering that the total capacity of on-chip buffers is gen-
erally limited, we consider a configuration in which only ker-
nels are stored in on-chip buffers and input data is not buffered.

Figure 9 shows an example in which calculations are per-
formed using two kernels, W0 and W1. In the next iteration of
Loop-3, W0 and W1 are used again. Therefore, these kernels
are stored in the on-chip buffer. If the kernel size isNk and
the number of kernels isQ, the number of bits of the on-chip
buffer isQNk.

A.3. The number of bits read from external memory

When Loop-4 is repeatedly executed in such a manner as per-
forming convolution calculations for one kernel and then the
next kernel, all bits of the input data are read from external
memory for each iteration. Therefore, the same input data is
read from external memory the same number of times as the
number of iterations of Loop-4. When performing convolution
calculations for two kernels concurrently as shown in Fig. 9,
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Fig. 13. An example of register usage in RDR architecture.

the input data is reused, so the number of times the input data
is read can be halved. In general, whenQ kernels are calcu-
lated in parallel, the number of times the input data is read can
be reduced to one-Qth.

A.4. Summary
The number of kernelsQ used in MAC calculations in parallel
and the number of bits mentioned above are shown in Table I.
Here,Nk = 1152 (= 3×3×128), the input data size is 64×
64×128, the number of iterations of Loop-4 (total number of
kernels) is 64, and the number of PEs is 24. The number of bits
of the registers to hold the MAC calculation intermediate result
‘ACC regs’, and the number of bits of the on-chip buffer are
proportional toQ. By using the on-chip buffer, there is no need
to read the same kernel from external memory multiple times,
and the number of kernel read bits ‘Kernel Read’ is equal to
the total number of bits of 64 kernels regardless of the value of
Q. The number of input data read bits ‘Input Read’ is inversely
proportional to theQ value.

B. Reduction of registers by utilizing BREG
B.1. Sharing kernel
Figure 12 shows the implementation of the RDR architecture
and the RB architecture for a circuit that executes convolution
calculations in parallel when Loop-3 is 2-step unrolled verti-
cally and Loop-4 is 2-step unrolled. In Fig. 12, the calculation
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Fig. 16. An example of register usage in RB architecture with BREG sharing.

is performed using two kernels W0 and W1. In the RDR archi-
tecture, the input data and kernels required for the calculations
performed by each PE for each CC must be stored indepen-
dently in registers inside the PE. Therefore, even if the PEs use
the same kernel for calculations as shown in Fig. 12(a), each
PE needs a register to store the kernel. In the RB architecture,
the kernels are stored in the BREGs and used by two vertically
adjacent PEs as shown in Fig. 12(b). By unrolling Loop-3 ver-
tically in an even number of steps, the number of register bits
required to store the kernel can be reduced to half compared to
the RDR architecture.

Loop-3 isX-step unrolled horizontally andY-step unrolled
vertically, whereY is an even number. In this case, the number
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of PEs isXY. Loop-2 isd-step unrolled. If the kernel size is
K both horizontally and vertically, the number of register bits
required to hold a kernel isK ×K × d. The total number of
register bits required to hold all the necessary kernel isXYK2d
for the RDR architecture andXYK2d/2 for the RB architecture.

B.2. Sharing input data

Consider the case where Loop-3 is 4-step unrolled both ver-
tically and horizontally, and four iterations of Loop-4 (using
four kernels W0, W1, W2, and W3) are executed concurrently.
In this case, Figs. 13 and 14 show how data is stored in registers
in the RDR architecture and the RB architecture, respectively.
As mentioned in Sec. B.1, the number of registers that hold
kernels in the RB architecture can be halved by using BREGs
compared to the RDR architecture.

Here, we pay close attention to the PEs and BREGs for input
data in the top two rows of Fig. 14. In Fig. 14, all input data
is stored in independent BREGs, but there is some overlap in
the input data required by vertically adjacent PEs. Therefore,
by providing a BREG for input data between PEs as shown in
Fig. 15, it becomes possible to hold shared data without over-
lap. By eliminating overlaps, the number of register bits for
input data storage can be reduced. Figure 16 shows the final
kernel and input data held in BREG in the RB architecture with
reduced duplication of input data.

When the kernel size is horizontallyK, the leftmost PE re-
quiresK columns of input data, the PE to the right requires
K + 1 columns, the PE to the right of that requiresK + 2
columns, and so on, as shown in Figs. 13 and 16. The total
number of columns of the input data isC = X(K +(X−1)/2)
for the RDR and RB architectures.

In the RDR architecture, the number of rows of input data
stored in the register isYK. In the RB architecture,K +1 rows
of input data are stored in the BREG between vertically ad-
jacent PEs, with the upper PE using the firstK rows and the
lower PE using the lastK rows. Therefore, the number of rows
of input data stored in the BREG isY(K +1)/2.

The total number of register bits required to store input data
is CYKd for the RDR architecture andCY(K + 1)d/2 for the
RB architecture.

V. EVALUATION

The number of registers required to hold the kernel and in-
put data when Loop-3 is unrolled in various ways is compared
between the implementations of RDR and RB architectures.

The number of PEs is 24, and Loop-3 isX-step unrolled
horizontally andY-step unrolled vertically.XY = 24 andY
are even numbers. Loop-1 is fully unrolled, and Loop-2 is
d = 6-step unrolled. Figure 17 shows the number of registers
when the kernel size isK = 3, and Fig. 18 shows the number
of registers whenK = 9. The RB architecture can reduce the
number of registers by 33% whenK = 3 and 44% whenK = 9
compared to the RDR architecture.

The number of kernels processed concurrently affects the
number of bits of the on-chip buffer, but does not affect the
number of bits of the BREG.
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Fig. 17. The number of register bits for Loop-3 unrolling step ofX×Y
(K = 3).
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Fig. 18. The number of register bits for Loop-3 unrolling step ofX×Y
(K = 9).

VI. CONCLUSIONS

We proposed a method to reduce the number of register bits
using the RB architecture in the LSI implementation of a bi-
narized NN. It was confirmed that the number of register bits
could be reduced by 33% when the kernel sizeK = 3 and by
44% whenK = 4 compared to the RDR architecture. Future
challenges include evaluating the number of bits when supply-
ing input data to the PE array and reducing the number of bits
read from external memory by using an on-chip buffer for in-
put data.
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