R2-13 SASIMI 2025 Proceedings

Reducing Registers in Convolution Operation for Binarized Neural Networks
with Register-Bridge LSI Architecture

Jun Masuda Kazuhito Ito

Graduate School of Science and Engineering
Saitama University
Saitama 338-8570, Japan

. . lock period
Abstract— Convolutional neural networks are widely used to ! NN — >
. . . . -, k Operation communication j long communication k+2
implement machine learning such as image recognition. BNNSs, ‘ | / <l | L.C
which binarize data and convolution weights, are advantageous @ [T | wait L] |
. <;:>clock period
in terms of reducing power consumption and miniaturizing im- « . w2 3 vy s
. . | | | | | | |
plementations. In this paper, a method to reduce the number of ® [1] T 11 | ce
registers required to store data and weights in LSI implementa- N T processing fime reduced

. K i - X . communication ina PE communication between adjacent PEs
tions of BNNs is proposed using the register bridge architecture.

The number of register bits was reduced by 44% compared to Fig. 1 Operation and communication time chart for LSI implementation. (a)
. . . random placement. (b) structured placement.
using the conventional architecture.

I. INTRODUCTION = =
L . . -FU -FU -FU -FU
Inrecent years, the application of machine learning has been o =41 & S
! > ! i = H[=s % id [S|[LREG]| [[s|[LREG] [
attracting attention. In particular, convolutional neural net- {|LBES LREG) | {|HBEG | || [LRES
works (CNNSs) are widely used in the field of image recog- I K ==N= B 5
nition [1]. CNNs are composed of an input layer, convolution g
. c ; put lay ;gL
layers, pooling layers, fully connected layers, and an output &= [F[roh F==rShirea| &[4 [F[REc| ET=NinEG] [
layer. In the convolution layer, convolution calculations using E Ee E — trea] | | 12 Ree
input data and weight coefficients called kernel are repeatedly m m
performed, which is actually a product-sum calculation. This (@ (b)

convolution calculation can be processed in parallel on an LStig. 2. Parallel LS architectures. (a)RDR. (b)RB
Typically, the input data and kernels required for CNN con-
volution calculations are large, making it difficult to store allof :
the data in the on-chip memory inside the LSI. Therefore, e)?_atlon time and reduc!ng the number of register bits by sharing
ternal memory must be provided, and calculations must be p(g@ta bgtween PEs using BREGs. . . .
formed while communicating appropriately between the LS| In this Paper, We propose an LS |mplementat|9n tgrgetl_ng
and the external memory. In this case, communication betwe RB architecture of a BNN that takes communication with

the LSI and the external memory causes significant delays aﬁﬁter?ﬁl éntt:]mtotryklnto (éOhSltderatlc;r;.h Infpa{tlculza]cr,t;/]v elgrBoposr:e.
power consumption, so a calculation execution method th@tme Oh a” a e(j a V?]n "?‘get‘)’ clea ;_re 0 PeE archi-
minimizes inter-chip communication is required [2]. tecture that allows data sharing between adjacent PEs to trans-

Itis known that in CNNs, inference accuracy does not mucﬂm input data and kernels to PEs with fewer register bits than
decrease even if the nurr'1ber of bits used to represent inrmF RDR architecture and execute convolution calculations in
data and kernels is reduced. CNNs that limit both input dat%NN In para!lel.) _
and kernels to 1-bit binary values are called binarized NNs The rgmamder of _the paper 1s or_gamzed as fO||0YVS. The
(BNNS). In BNNS, the product of input data and kernels can b_gB architecture is briefly explained in Sect. 2. Consideration

calculated using a simple exclusive OR (XNOR) circuit rathel? hardware implementation of BNN is presented in Sect. 3.
than a multiplication circuit [3]. The proposed method is described in Sect. 4 and evaluated in

As architectures suitable for parallel calculations for LSIsS€Ct: 5. Section 6 concludes the work.

the regularly distributed register (RDR) architecture [4], in
which processing elements (PEs) are regularly arranged, and
the register bridge (RB) architecture [5], in which registers LSIs consist of functional units (FUs), registers, control cir-
called bridge registers (BREGS) are provided between PEsyits, and so on. When many FUs and registers are placed
have been proposed. Compared to the RDR architecture, ttamdomly on an LSI chip, long-distance communication on the
RB architecture has the advantage of reducing data communkip is required as the LSI becomes larger, and the commu-

Il. REGISTERBRIDGE ARCHITECTURE

- 148 -

input/activation weight

nication delay increases. In clock-synchronized processing, if

. o @; Woa Wy iy Wy Wy A Wi arithmetic logic
long-distance communication is required within one clock pe- w1 e alwlpllalwlp
riod, the clock period must be extended to match the longest) “1[-1[+1[[0 |01
communication delay in order to execute the processing cor- O~ “1{+1)-1)) 0| 1]0
rectly as shown in Fig. 1(a). Even if the operation to generate cum of broducts ﬁ j j 1 (1) (1)
a data and the operation to consume the data are placed close @ ®)

to each other on the chip and the required communication time

. Fig. 3. Convolution and its implementation in BNNSs. (a) convolution. (b) a
is short, operations must be synchronized with a clock S|ganJ%it product. P @ (®)

resulting in unnecessary waiting time before the operation to

consume the data can begin execution as shown in Fig. 1(a)or(no=0 : no<OUT ; no++) -ereeeee Loop-4
Hence the processing time derived as the product of the clock for(y=0:y<OH:y++) = wmmeeeeeeee L°°P'3V} generate 3D output
. .. for(x=0 ; X<OW ; X++) ==--mmmmmmmee Loop-3x
period and the number of clock cycles (CCs) is increased. s(no.x,y) = 0
[y ; ; for(ni=0 ; ni<IN ; Ni++) -=-meeeeeme Loop-2
The .regqlar distributed register (RDR) architecture [4] TOr(Ky=0 - ky<K : Kyss) oo Loop-1y}3D sum OJ
shown in Fig. 2(a) has been proposed as a parallel process- for(kx=0 ; k<K kb4) = Loop-1x products
ing architecture for LSI. In the RDR architecture, multiple s(no.x.y) += ai(nixekoy+ky) w(ni.no kox.ky)

- . S Xy) = f(s(no,x,y)+bi
PEs containing FUs, registers, and control circuits (FSM) are 2o(noxy) = fisnoxy)biasino))

placed in a regular manner, and the operations in the givé&ig. 4 Pseudocode for convolution layer calculation.
processing are executed in parallel by the multiple PEs. Com-

munication within one CC is limited to between the FUs and (input depth)

registers in the same PE. Data reading from registers, commu- LOOP'2\ Loopix 1y ‘°“T§L§i"‘“’
nicating the data to FUs in the same PE, and communicating . %

and storing the calculation results to registers in the same PE i ® Q

are performed within one CC. Registers in a PE are called local { convolution N l—’ Loop-3x
registers (LREGs). Communication between PEs is performed \ 4 ¥ Loop-3y
using a CC dedicated to communication that does not involve input kernel output

calculation on FUs, and communication within one CC is lim-_))
ited to adjacent PEs. A long distant communication is pef¢- > L0oPsin convolution.
formed using multiple CCs by repeating communication be-

tween adjacent PEs. This shortens the communication distance IlIl. HARDWARE IMPLEMENTATION OF BNNS

within one CC, shortens the clock period, and reduces the pra- ~onvolution operation in BNNs

cessing time a§ §hown in Fig. 1(_b)' i _ The convolution operation of kernel sik& is illustrated in
Instead of wiring bet_ween adjacent_ PEs in the_RDR archpig' 3(a). M inputs andM weights in the fist layer oM acti-
tecture, the register bridge (RB) architecture [5] is proposedgtions andvl weights in the second and later layers are mul-
in whlch registers are plf_;lced between adjacent PE; as Shoh’Yﬂied one by one to geM products and these products are
in Fig. 2(b) and the registers can be read and written frog),;ymed up. In BNN, the input/activation and weight take only
both adjacent PEs. _The registers are called brldge_reglst% values, ‘1’ and ‘—1', and the combination of the values
(BREGs). Data reading from LREG or BREG, executing calgf jnpyy/activationa, weightw, and their arithmetic produg
culation on FUs in the same PE, and storing the calculation rgre shown in the left half of Fig. 3(b). When the logic val-
sults to LREG or BREG are performed within one CC. Thergeag 1 and 0 are assigned to" and ‘—1', respectively, the

is no significant difference between the communication timg,,, taple of the multiplication is as shown in the right half
between adjacent BREGs and FUs and between LREGs a§drig 3(h). This means that the 1-bit multiplication in BNNs
FUs, and the shortest clock cycles of the RDR and RB archiyp pe performed by the inversion of the exclusive ORaof

tectures are considered to be equivalent. Communication btﬁidw. That is, the 1-bit product can be obtained by an XNOR
tween distant PEs is performed by repeating communicatiq;beration_

between BREGs using multiple CCs. The data to be commu-
nicated to another PE is stored in an appropriate BREG rathBr 4 level nested loops in the convolution
than LREG, hence the required number of CCs for communi- The computation in the convolution layer of CNN consists
cation is the same or less than the RDR architecture. of four levels of nested loops, as shown in the pseudocode
Another advantage of the RB architecture is that it is possin Fig. 4. The four-level loops are illustrated in Fig. 5. In
ble to share data between adjacent PEs using the BREG. WHgg. 5, the convolution calculation proceeds by sliding the ker-
adjacent PEs use the same data, the RDR architecture requitebagainst the input and repeating the multiply-add calcula-
each PE to store the data in the LREG in duplicate. On then between the corresponding input region and the kernel.
other hand, in the RB architecture, since the PEs on both sidése roles of each of the four loops are as follows. Loop-1
of the BREG can read data directly from the BREG, the nun{Loop-1x, Loop-1y) corresponds to the vertical and horizontal
ber of register bits required to hold the data can be reduced Hirections of the kernel, Loop-2 corresponds to the depth direc-
storing commonly used data in the BREG. tion of the input, Loop-3 (Loop-3%, Loop-3y) corresponds to

- 149 -

No unroll

Unroll Loop-1
L

Unroll Loop-1&2

1CC

—

10

oop-1 unro

“m

Functional unit (FU)

“u

“u

y |

d

00 10 20 30 40 50
01 11 21 31 41 51
02 12 22 32 42 52

00 10 20
01 11 21
02 12 22

input kernels

Fig. 8. An example of input and two kernels.

Loop-2 unroll Kernel
WO
Fig. 6. Required FUs in PE against Loop-1 and Loop-2 unrolling. p=0
S input
1cC 32 42 52 D=0
(Loop-1&2 unrolled) PE input
® D=0
| Nounroll | » =
Loop-3 unrolled Kernel
01/11] w,
PE PE D=0
Unroll Loop-3 ®% »
FU FU 30 40 50
32 42 52 D=0
Loop-4 unrolled
Loop-3 unrolled l PE PE input
D=0
Unroll Loop-384 %@ » FUs —
- PE PE | mmmsSmT o ess-oTIooooo--Sooooooooomoooooo
FUs FUs Kernel
input kernel W,
(weights) D=1
30 40 50
Fig. 7. Required PEs against Loop-3 and Loop-4 unrolling. 2; :; g;ﬁ “E)F>_“1t
. . . . input
the vertical and horizontal directions of the output, and Loop-4 D=1
corresponds to the depth direction of the output. By unrolling o [oeee] [emee] [emea] ~ [emee]
these four levels of loops, the convolution calculation can be Kere
executed in parallel on an LSI. Unrolling a loop to perform D=1
n iterations simultaneously in parallel is definedrastep un- o —
rolling of the loop, or it is denoted as the looprisstep un- A o=
rolled. .
input
. . D=1
C. Loop unrolling for parallel computation ~ [eee] [emes] [emea] [mmea]
Figure 6 shows the input data and kernel area that are used in Kernel
the calculations per clock cycle (CC) in a PE when Loop-1 and o
Loop-2 are unrolled. When both Loop-1 and Loop-2 are not 0 0o
. . . 141 5
unrolled, one piece of data is calculated per CC, as shown in 52 2 52 J I
the top part of Fig. 6. When Loop-1 is unrolled, the calculation oot
area per CC increases in the vertical and horizontal directions D=2

of the kernel, as shown in the middle part of Fig. 6. When both

Loop-1 and Loop-2 are unrolled, the calculation area increasgg. o, parallelized computation of convolution on RB architecture.

not only in the vertical and horizontal directions of the kernel,
but also in the depth direction of the kernel, as shown in the

bottom part of Fig. 6. Here, the operations for unrolled Loop-iniddle of Fig. 7. Here, Loop-3 is 2-step unrolled, and two PEs
and 2 are performed in parallel by preparing multiple FUs in perform calculations in parallel using a common kernel for dif-
ferent input data. When both Loop-3 and 4 are unrolled, as
Figure 7 shows the input data and kernel area that are tekown in the bottom of Fig. 7, multiple kernels are used for the
subject of calculation per CC when Loop-1 and 2 are unrolledalculation using a common input. Here, Loop-3 and Loop-
and then Loop-3 and 4 are unrolled. The top of Fig. 7 corret are each 2-step unrolled, and calculations are performed in
sponds to the case where only Loop-1 and 2 are unrolled parallel using four PEs. In the figure, two PEs arranged hori-
shown in the bottom of Fig. 6, and Loop-3 and 4 are not ureontally each perform calculations using the same input data,
rolled. When Loop-3 is unrolled, calculations are performednd two PEs arranged vertically each perform calculations us-

PE.

using the same kernel for different input data, as shown in thieg the same kernel.

- 150 -

IV. THE PROPOSEDMETHOD

The proposed method of performing convolution calcula-
tions in binarized CNN on an LSI of the RB architecture is
described.

A. Unrolling the loops for convolution

In the proposed method, the loops for convolution are un-
rolled as follows. Loop-1 is completely unrolled. Loop-2 is Qregs
partially unrolled, and each iteration of the partially unrolled
Loop-2 is shown as D=0, D=1, and so on as shown in Fig. 8.
Loop-3is partially unrolled horizontally and vertically. Loop-4 Fig. 10. FUs for MAC calculation and registers for the intermediate results in
is not unrolled, but iterations in Loop-4 are executed concur-—"
rently. By using the input data and two kernelg \ahd W

shown in Fig. 8 as an example, how the convolution is per- pe [l pe D pe @ pe
formed is explained as follows. [BREG]_|EEG] |EREG|_EAES i
Figure 9 shows how the input data and the two kernels are PE g PE |g PE || PE (©c8)
stored in the BREG when convolution calculations are per- e E '
formed in parallel on the RB architecture. The input data and PElE PF g E g e G
kernels are transferred on the BREG from right to left in Fig. 9 B B (S

o
m
BREG

PE

BREG

PE

BREG

RE]

every time a clock cycle passes. Here, the vertical and hori-
zontal sizes of the kernel are both 3, thus 6 columns of input _
data are placed in the BREG on the right end, and the requirEl§- 1+ On-chip buffer and external memory.

columns of input data are transferred to the left. The PE ex-

ecutes the multiply and accumulate (MAC) calculation when TABLE |

the input data and the kernel required for the calculation are_ THE BITS OF REGISTERSON-CHIP BUFFER AND MEMORY READ

BNN chip

available in the adjacent BREGs #kernels| ACCregs| On-chip buf | Kernel Read| Input Read
- .) . . bit bit Kbit Mbit
In Figure 9, the kernel given to the nght[most PE i Yor ? [2('54]1 £1'5]2 [73_'7]3 [33_%
CC0and W for CC 1. Using two consecutive CCs, input data 2 528 2304 73.73 16.78
corresponding to the same D value is repeatedly used to calcy- 3 792 3456 73.73 11.18
late two outputs corresponding to each of the two kernels. Furi___4 1056 4608 73.73 8.39

thermore, the input data and kernels given from BREG switch
MAC calculations proceed in each PE. .
; L . Input data and kernels are stored in external memory, and as
When the convolution calculation is performed using the I : L
. N . Shown in Fig. 11, data required for calculation is read from
method illustrated in Fig. 9, the number of bits of the reg- : o .
:) . . . external memory and provided to the PE via inter-chip com-
ister holding the intermediate result of MAC calculation, the ™"~ "~ . . .
X ; : munication. Storing repeatedly used data in an on-chip buffer
on-chip buffer capacity, and the number of bits read from the
: L reduces the amount of data reads from external memory. In
external memory change depending on the combination of th?h .
: : . other words, the on-chip buffer acts as a cache.
execution methods of Loop-3 and Loop-4. Each item is con- L . : .
. Considering that the total capacity of on-chip buffers is gen-
sidered below. o . ; o .
erally limited, we consider a configuration in which only ker-
A.1. Register for intermediate result of multiplication and acrels are stored in on-chip buffers and input data is not buffered.
cumulation calculation Figure 9 shows an example in which calculations are per-
In the MAC calculation of input data and kernels, the calculaformed using two kernels, Y\and W. In the next iteration of
tion for two kernels is performed alternately, that is, for kerngloop-3, W and W, are used again. Therefore, these kernels
W, and D=0, for kernel W and D=0, W, and D=1, W and are stored in the on-chip buffer. If the kernel sizeNisand
D=1, and so on. In other words, the MAC calculation fog W the number of kernels i, the number of bits of the on-chip
and the MAC calculation for Ware performed concurrently buffer isQN.
using the same PE in a time-sharing manner. Therefore, it is]
necessary to store the intermediate MAC calculation results fér3: The number of bits read from external memory
each kernel in a separate register as shown in Fig. 10. The kévhen Loop-4 is repeatedly executed in such a manner as per-
nel size, i.e., the number of weights in one kerneNjis In a forming convolution calculations for one kernel and then the
binarized NN, the maximum value of the MAC calculation renext kernel, all bits of the input data are read from external
sult isNg, and the number of bits required for the regiddes memory for each iteration. Therefore, the same input data is
[log,(Nk +1)]. When calculating kernels concurrently, the read from external memory the same number of times as the
total number of bits required for the registers to store the MA@umber of iterations of Loop-4. When performing convolution

calculation results iQB. This is required for each PE. calculations for two kernels concurrently as shown in Fig. 9,

- 151 -

PEpr PEpg
input input
kernel Wy kernel W4
PEpp PEgm
input input
kernel Wy [COERA
@ b)

Fig. 12 Storing kernels in RDR architecture (a) and RB architecture (b).
30 40 50 20 30 40 50 10 20 30 40 50 00 10 20 30 40 50
31 41 51 21 31 41 51 11 21 31 41 51 01 11 21 31 41 51
32 42 52 22 32 42 52 12 22 32 42 52 02 12 22 32 42 52
o

PE PE
31 41 51 21 31 41 51 11 21 31 41 51 01 11 21 31 41 51
32 42 52 22 32 42 52 12 22 32 42 52 02 12 22 32 42 52
33 43 53 23 33 43 53 13 23 33 43 53 03 13 23 33 43 53
e

PE PE
32 42 52 22 32 42 52 12 22 32 42 52 02 12 22 32 42 52
33 43 53 23 33 43 53 13 23 33 43 53 03 13 23 33 43 53
34 44 54 24 34 44 54 14 24 34 44 54 04 14 24 34 44 54

PE PE
33 43 53 23|133/43(53 13/(23|133/(43/53 03 13 23 33 43 53
34 44 54 24 34 44 54 14 24 34 44 54 04 14 24 34 44 54
35 45 55 25 35 45 55 15 25 35 45 55 05 15 25 35 45 55
kernel Wy [CGERS kernel W,

PE PE PE

Fig.

13 An example of register usage in RDR architecture.

20 30 40 50
21 31 41 51
22 32 42 52

10 20 30 40 50
11 21 31 41 51
12 22 32 42 52

00 10 20 30 40 50
01 11 21 31 41 51
02 12 22 32 42 52

21 31 41 51
22 32 42 52
23 33 43 53

11 21 31 41 51
12 22 32 42 52
13|23/ 33 |43 53

01 11 21 31 41 51
02 12 22 32 42 52
03 13 23 33 43 53

22 32 42 52
23 33 43 53
24 34 44 54

12 22 32 42 52
13 23 33 43 53
14 24 34 44 54

02 12 22 32 42 52
03 13 23 33 43 53
04 14 24 34 44 54

23 33 43 53
2434 44 54
25 35 45 55

ﬂ 34 44 54
(a)

Fig. 15 BREG sharing for input data.

13 23 33 43 53
14 24 34 44 54
15 25 35 45 55

03 13 23 33 43 53
04 14 24 34 44 54

05 15 25 35 45 55

31 41 51
32 42 52
33 43 53

32 42 52
33 43 53

30 40 50
kernel W, 31 41 51
32 42 52

20 30 40 50
kernel Wy 21 31 41 51
22 32 42 52

10 20 30 40 50
kernel W, 11 21 31 41 51
12 22 32 42 52

00 10 20 30 40 50
kernel W5 01 11 21 31 41 51
02 12 22 32 42 52

the input data is reused, so the number of times the input data
is read can be halved. In general, wh@rkernels are calcu-

33 43 53

PE

23 33 43 53

13 23 33 43 53

03 13 23 33 43 53

PE

PE

PE

lated in parallel, the number of times the input data is read can

be reduced to onéth.

A.4. Summary

The number of kernel® used in MAC calculations in parallel
and the number of bits mentioned above are shown in Table |

EE]

32 42 52

kernel W, 33 43 53
34 44 54
35 45 55

EE

22 32 42 52
kernel Wy 23 33 43 53
24 34 44 54
25 35 45 55

EE

12 22 32 42 52
kernel W, 13 23 33 43 53
14 24 34 44 54
15 25 35 45 55

PE

02 12 22 32 42 52

kernel W5 03 13 23 33 43 53

04 14 24 34 44 54
05 15 25 35 45 55

Here,Nx = 1152 & 3 x 3 x 128), the input data size is 64
64 x 128, the number of iterations of Loop-4 (total number of

kernels) is 64, and the number of PEs is 24. The number of bitg; 16 An example of register usage in RB architecture with BREG sharing.

of the registers to hold the MAC calculation intermediate result
‘ACC regs’, and the number of bits of the on-chip buffer are

proportional toQ. By using the on-chip buffer, there is no needs performed using two kernels $¥nd W;. In the RDR archi-

to read the same kernel from external memory mu|t|p|e time@CtUre, the input data and kernels required for the calculations
and the number of kernel read bits ‘Kernel Read’ is equal tBerformed by each PE for each CC must be stored indepen-
the total number of bits of 64 kernels regardless of the value 8€ntly in registers inside the PE. Therefore, even if the PEs use
Q. The number of input data read bits ‘Input Read’ is inversel{he same kernel for calculations as shown in Fig. 12(a), each
proportional to the) value.

B. Reduction of registers by utilizing BREG
B.1. Sharing kernel
Figure 12 shows the implementation of the RDR architecturi@quired to store the kernel can be reduced to half compared to
and the RB architecture for a circuit that executes convolutidieé RDR architecture.

calculations in parallel when Loop-3 is 2-step unrolled verti- Loop-3 isX-step unrolled horizontally and-step unrolled
cally and Loop-4 is 2-step unrolled. In Fig. 12, the calculatiowertically, wheréY is an even number. In this case, the number

PE needs a register to store the kernel. In the RB architecture,
the kernels are stored in the BREGs and used by two vertically
adjacent PEs as shown in Fig. 12(b). By unrolling Loop-3 ver-

tically in an even number of steps, the number of register bits

-152-

6000

of PEs isXY. Loop-2 isd-step unrolled. If the kernel size is v ,

. . . . input RB input
K both horizontally and vertically, the number of register bits 5000 | | B RDR kemel M RB kernel
required to hold a kernel iK x K x d. The total number of
register bits required to hold all the necessary kern¥M&?d
for the RDR architecture andYK?d /2 for the RB architecture.

4000

3000

2000

the number of bits

B.2. Sharing input data

Consider the case where Loop-3 is 4-step unrolled both ver- '°°
tically and horizontally, and four iterations of Loop-4 (using 0
four kernels W, Wy, W», and W) are executed concurrently.
In this case, Figs. 13 and 14 show how data is stored in registers
in the RDR architecture and the RB architecture, respectivelfig- 17- The number of register bits for Loop-3 unrolling stepok Y
As mentioned in Sec. B.1, the number of registers that hold ~
kernels in the RB architecture can be halved by using BREGs .,
compared to the RDR architecture. 50000 RDRinput M RB input
Here, we pay close attention to the PEs and BREGs for input, B ADR kernel M RB kernel
data in the top two rows of Fig. 14. In Fig. 14, all input data 22
is stored in independent BREGS, but there is some overlap i |ra-, 20000
the input data required by vertically adjacent PEs. Thereforeg 15000
by providing a BREG for input data between PEs as shown i |nq,
Fig. 15, it becomes possible to hold shared data without over®
lap. By eliminating overlaps, the number of register bits for
input data storage can be reduced. Figure 16 shows the final ©° = 5, 5% 12 B8 226 B4 12%2
kernel and input data held in BREG in the RB architecture with Loop-3 unrolling step
redwuﬁgg (tjhueplll((;ar'::gFS?;;nlzu;gs;intalw the leftmost PE re- 5|<g 1985 The number of register bits for Loop-3 unrolling stepok Y
quiresK columns of input data, the PE to the right requires
K 4+ 1 columns, the PE to the right of that requirkst 2
columns, and so on, as shown in Figs. 13 and 16. The total
number of columns of the input dataGs= X(K + (X —1)/2) We proposed a method to reduce the number of register bits
for the RDR and RB architectures. using the RB architecture in the LS| implementation of a bi-
In the RDR architecture, the number of rows of input dat@arized NN. It was confirmed that the number of register bits
stored in the register K. In the RB architecturek +1 rows could be reduced by 33% when the kernel dize- 3 and by
of input data are stored in the BREG between vertically ad*4% whenK = 4 compared to the RDR architecture. Future
jacent PEs, with the upper PE using the fiistows and the challenges include evaluating the number of bits when supply-
lower PE using the last rows. Therefore, the number of rows ing input data to the PE array and reducing the number of bits
of input data stored in the BREGYYK +1)/2. read from external memory by using an on-chip buffer for in-
The total number of register bits required to store input dafut data.
is CYKdfor the RDR architecture an@Y(K + 1)d/2 for the
RB architecture. ACKNOWLEDGEMENTS
This work was supported by JISPS KAKENHI Grant Num-
V. [EVALUATION ber 23K03969.

The number of registers required to hold the kernel and in- REFERENCES

put data Whe_n Loop-3is u_nrolled In various ways Is compar] Stanford University, “Convolutional neural networks for visual recogni-
between the implementations of RDR and RB architectures.” ~ tion.” https://cs231n.github.io/convolutional-networks/. Accessed: 2025-

1x24 2x12 3x8 4x6 6x4 12x2
Loop-3 unrolling step

10000

5000

VI. CONCLUSIONS

i 2y 05-16
T.he number of PEs is 24, and LQOp 3Xsstep unrolied [2] Y.Ma,Y. Cao, S. Vrudhula, and J.s. Seo, “Optimizing the convolution op-
horizontally andY-step unrolled vertically. XY = 24 andY eration to accelerate deep neural networks on FPGA,” IEEE Transactions

are even numbers. Loop-1 is fuIIy unrolled, and Loop-2 is on Very Large Scale Integration (VLSI) Systems, vol.26, no.7, pp.1354—

. . 1367, 2018.
d = 6-step unrolled. Figure 17 shows the number of regBtefﬁ Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,

when the kernel size iK = 3, and Fig. 18 shows the number ~ and K. Vissers, “FINN: A framework for fast, scalable binarized neural

. o . network inference,” Proceedings of the 2017 ACM/SIGDA international
of registers whek = 9. The RB architecture can reduce the symposium on field-programmable gate arrays, pp.65—74, 2017.

number of registers by 33% whéh= 3 and 44% wheil =9 [4] J.Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthe-
compared to the RDR architecture. sis for on-chip multicycle communication,” IEEE Trans. Computer-Aided

h b f k | d | ff Design Integrated Cirtuit. Syst., vol.23, no.4, pp.550-564, April 2004.
The num _er Or kernels processe concurrently affects t T. Fujii, S. Nishizawa, and K. Ito, “Register-bridge architecture and its
number of bits of the on-chip buffer, but does not affect the " application to multiprocessor systems,” Proc. SASIMI, pp.10-15, 2016.

number of bits of the BREG.

- 153 -

