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Abstract— With the rise in ADAS (Advanced Driver Assistance

System) and autonomous driving, there is a demand for light-

weight image compression on edge devices. Although many image

compression FPGA accelerators have been designed to provide high

performance and low power consumption for data centers, they

often do not meet the resource constraints of edge devices. This pa-

per presents a hardware-accelerated JPEG encoder implemented

using Vitis HLS on an AMD KV260 board for edge processing. We

integrate the encoder with GStreamer, a multimedia framework

that allows for easy integration with existing Linux tools. The

system achieved the capture and encoding of 1080p NV12 images

from a MIPI camera at 19.5 fps, demonstrating low variation when

compared to CPU-based encoding, even under heavy load, and

thus being suited for low-latency applications.

Keywords— Hardware Acceleration, JPEG Encoding, Vitis

HLS, GStreamer, Kria KV260

I. Introduction

Edge computing applications, particularly in ADAS (Ad-

vanced Driver Assistance Systems) and real-time video pro-

cessing, demand efficient image compression solutions that can

operate under strict resource and latency constraints. CPU-based

software implementations experience performance degradation

under load and high resource consumption, while lower-level

custom RTL (Register Transfer Language) hardware designs,

though performant, lack flexibility for diverse deployment sce-

narios.

High-level Synthesis (HLS) tools offer a promising middle

ground, enabling algorithm description at a higher abstraction

level while automatically generating optimized hardware im-

plementations. Modern HLS ecosystems like AMD’s Vitis

HLS [1] provide comprehensive toolchains for FPGA devel-

opment, including specialized libraries for multimedia pro-

cessing. However, existing HLS-based image encoders in the

Vitis Libraries—such as PIK, Lepton, WebP, and JXL—target

high-throughput datacenter applications with high resource re-

quirements, limiting their applicability to resource-constrained

edge devices.

Furthermore, practical deployment of FPGA accelerators

in edge systems requires seamless integration with existing

software frameworks. While solutions like the Vitis Video

Analytics SDK (VVAS) provide multimedia support, integration

gaps remain between hardware acceleration and standard Linux

media pipelines for edge devices. This motivates the need

for lightweight, edge-optimized image compression solutions

with direct integration into established media frameworks like

GStreamer.

To address these challenges, this paper presents a complete

JPEG encoding solution optimized for edge computing appli-

cations. We selected JPEG due to its widespread adoption and

computational simplicity. Our contributions include:

1. A resource-efficient JPEG encoder implemented in Vitis

HLS, optimized for edge device deployment with minimal

FPGA resource utilization while maintaining real-time

performance.

2. A GStreamer plugin enabling integration with Linux multi-

media pipelines for practical edge computing deployment.

Section II reviews related work in JPEG encoding and hard-

ware implementation. Sections III, IV and V describe our JPEG

encoder implementation and GStreamer integration. Section VI

evaluates performance and Section VII concludes.

II. Related Work

Hardware approaches for image compression have explored

various optimization strategies. Li et al. [2] implemented

an HLS-based JPEG encoder for wearable devices, achieving

2.35 fps at 100MHz for 1280 × 960 images using dataflow

optimizations. Current Vitis Libraries include encoders for PIK,

Lepton, WebP, and JXL [3], but these target high-throughput

datacenter applications with substantial resource requirements

unsuitable for edge devices. As such, the existing HLS solutions

either require extensive FPGA resources or achieve limited

throughput for modern edge applications.

Additionally, practical FPGA deployment requires seamless

software integration. The Xilinx Video Analytics SDK provides

GStreamer plugins for FPGA acceleration [4], while Sanderson

et al. [5] demonstrate integration in GStreamer pipelines on Zynq

platforms. Despite these frameworks, gaps remain between

hardware optimization and standard multimedia workflows.

Our work addresses these limitations by providing a resource-

efficient HLS JPEG encoder with native GStreamer integration,

enabling practical deployment in resource-constrained edge

computing environments.
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Fig. 1. Architecture Overview: Hardware-software architecture for JPEG

encoding based on HLS and Linux. V4L2 interfaces with AMD’s MIPI CSI-2

RX IP, obtaining DMA buffers passed to the JPEG encoder IP via GStreamer.

This work contributes the HLS JPEG encoder kernel implementation and

GStreamer integration.

III. Overview of Proposed Architecture

The major considerations for our design take into account

the unique constraints of edge computing environments. Edge

devices impose strict constraints on PL memory, necessitating

a streaming architecture design. As some performance consid-

erations, such as AXI bursts, require a level of input buffering,

exploration of design space is crucial to optimize both resource

utilization and throughput. At the same time, a rich software

ecosystem allows for fast and practical deployment and testing

of the system.

These requirements guided our design (Fig. 1), combining

HLS hardware implementation with a Linux software stack.

HLS enables efficient dataflow design and rapid design space

exploration, while GStreamer boasts an extensive ecosystem

with flexible I/O device support, which we leverage through a

custom plugin interfacing with the HLS JPEG encoder.

IV. JPEG Encoder Kernel Implementation

JPEG encoding consists of color space conversion, DCT

(Discrete Cosine Transform), quantization, entropy coding and

encoding serializing. Please refer to the JPEG standard [6] for

more details, as well as TooJpeg [7] for a short and insightful

implementation in C++, of which this work uses as a basis for

the HLS implementation.

We will not cover the color space conversion as we assume the

input is in the NV12 (YUV420) format, a common format pro-

vided by cameras. We refer the reader to [3] for a detailed HLS

implementation of various color space conversion functions.

We note that the overall algorithm lends itself to the use of a

streaming architecture, as the data is processed in independent

units called MCUs (Minimum Coded Units). In Vitis HLS, this

is achieved by implementing each stage as a separate function

and connecting them using hls::stream (FIFO streams). The

result is a modular architecture with reusable code for processing

different color spaces.

Fig. 2 shows an overview of the architecture. The Y and UV

components are fed into the top kernel interface for aggregation

into a stream of MCU blocks. After each MCU block is

processed, it is sent to the next stage of the pipeline. DCT is

MCU-wise Computation

Loop

Pipeline
Read Y MCU

Aggregate Task DCT Y

Task DCT U

Task DCT V
Read UV MCU

Aggregate

Huffman U

Huffman V

Huffman Y

Task Byte
Packing

Write to DRAM

Fig. 2. JPEG Kernel Dataflow: An overview of the architecture of the JPEG

encoding kernel, highlighting how data flows between different processing

blocks.

applied to each block, and the information is compressed by

quantization, generating a stream of coefficients that are then

encoded by entropy. Finally, the final JPEG byte sequence

is generated by packing the encoded bits together and then is

written into memory. In particular, we use the HLS Task Library

to instantiate the DCT and byte packing blocks.

A. MCU Aggregation

The input stream is a continuous stream of pixels received

via an AXI4 Memory Mapped interface connecting to DDR

memory. To process the data in MCU-sized units, we need to

aggregate the input stream into blocks of 8 × 8 pixels. Using

Block RAM (BRAM) allows us to implement internal memory

to store these in programmable logic. Due to resource limitations

of embedded FPGAs, however, we may not have enough BRAM

to store the entire image in memory, or even a single MCU

line at a time. At the same time, non-sequential access to

memory is expensive in terms of performance, as the compiler

is unable to synthesize it into burst transfers. We solve this

by first writing in a burst fashion to non-expensive UltraRAM

(URAM) blocks, and then rearranging the data into the MCU

format using pipelined memory access.

In this solution, we showcase the effectiveness of HLS in

adapting to changes in hardware resource requirements. While

a Verilog solution may require extensive rewrite of the modules

used, HLS achieves the same result by adding pragma directives,

allowing one to specify the implementation type of the memory,

as shown below:

uint8_t uram_y[WIDTH * 16];

uint8_t uram_uv[WIDTH * 8];

#pragma HLS BIND_STORAGE variable=uram_y type=

ram_2p impl=uram

#pragma HLS BIND_STORAGE variable=uram_uv type=

ram_2p impl=uram

B. Discrete Cosine Transform and Quantization

The 2D DCT is implemented using a separable approach,

in which the 1D DCT is applied to each row and then to each
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column. The module takes as input an 8 × 8 block of pixels

from a single channel (Y, Cb, or Cr) and outputs an 8 × 8 block

of DCT coefficients.

By leveraging HLS’s array_partition directive, we di-

vide the memory accesses into chunks that can be processed

concurrently. This enables 1D DCT to be performed con-

currently for each row or column, optimizing memory access

patterns and achieving a pipelined architecture. The 1D DCT

itself is implemented using a traditional “DCT-II” convolutional

approach [8].

We combine quantization with the DCT step, multiplying

the DCT coefficients element-wise by the quantization matrix.

By applying a scaling factor to the matrix, we avoid the usual

division operation, such that the final operation is reduced to a

multiplication and shift operation (Eqs. 1 and 2),

&′
8, 9 =

2(

&8, 9

(1)

DCT8, 9 = SRR(⌊DCT8, 9&
′
8, 9⌋, () (2)

where &8, 9 is the original quantization matrix, ( is the scal-

ing factor, and SRR(G, () is the rounded arithmetic shift right

operation, implemented in C++ as

(x + (1 « (S - 1))) » S

C. Entropy Coding and Serialization

The final stage performs Huffman encoding and serializa-

tion of quantized DCT coefficients, as shown in Fig. 3. DC

coefficients use differential encoding with the previous block’s

DC value, while AC coefficients are run-length encoded in

zig-zag order. The Huffman encoder outputs variable-length

codes (huff_code), their bit lengths (huff_size), and count

(huff_num) via hls::stream interfaces.

The serialization module packs variable-length Huffman

codes into byte-aligned output using a stateful bit accumulator

num
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Fig. 3. Huffman Coding and Serialization: The Huffman encoder receives

DCT coefficients and performs differential and RLE-based encoding, while the

byte packer accumulates completed MCUs and serializes the resulting codes

according to the JPEG stream format.

that tracks current byte and bit positions. When processing

completes, an end-of-image marker (0xFFD9) is appended to

generate a valid JPEG stream.

V. Software Architecture

The software architecture for the JPEG encoder bridges the

gap between hardware and software components, allowing

for the encoder to be used in a variety of applications. We

utilize AMD’s Xilinx Runtime Library to interface with the

hardware accelerator, as well as GStreamer for interaction with

other media components. GStreamer, a media framework, is

a useful candidate for a common media interface. Along with

Video4Linux2, it provides increased flexibility and compatibility

with different media formats. Fig. 4 presents an overview of

the GStreamer plugin architecture for interacting with the HLS-

defined JPEG encoder.

Most notably, GStreamer provides a plugin API for inter-

facing with arbitrary image processing functions. We provide

jpegenc_accel, a plugin akin to GStreamer’s jpegenc plu-

gin. The plugin is based on the Vitis Video Analytics SDK

(VVAS) utils API, which provides a set of utility functions for

handling DMA transactions specifically for XRT kernels via

vvas_xrt_import_bo. Using this approach, we can efficiently

manage DMA transactions and ensure optimal performance,

enabling a path for direct camera encoding through V4L2 DMA

buffers.

VI. Experiments and Results

We synthesized and implemented the design of the JPEG

encoder for the AMD Kria KV260 board[9], which is equipped

with a Xilinx Zynq UltraScale+ MPSoC. Table I contains the

specifications of the board.

For the rest of the section, we provide an evaluation based

on the resource utilization of the encoding IP compared to the

total available for the Kria KV260, as well as a comparative

evaluation between our encoder and the libjpegturbo-based

jpegenc encoder available on GStreamer.

jpeg_encode(y,uv,W,H,out,&size)
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Fig. 4. Overview of the GStreamer Plugin: After obtaining the video buffer

from a source element, we extract the DMA file descriptors corresponding to

the Y and UV planes, using them as input for the JPEG encoder. The encoder

itself is executed via the Xilinx Runtime Library.
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TABLE I

Specifications of the AMD Kria KV260 board

Parameter Value

CPU Cortex-A53 up to 1.5GHz

Memory 4GB 64-bit DDR4

A. Resource Utilization

We used Vitis 2023.2 to synthesize and implement the JPEG

encoder for the AMD Kria KV260 board at 250 MHz. The

scaling factor was set to 10, and the quantization matrix was

set to the standard JPEG quantization matrix. We compared

resource utilization and megapixel throughput with the WebP

encoder from Vitis Libraries [3], implementing it at 100 MHz

since the default 200 MHz configuration exceeded available

resources. We ran the JPEG encoder on the Kria KV260 board

using a GStreamer pipeline that reads from raw 1920 × 1080

NV12 video frames. For the WebP encoder, we used the cwebp

test program available in the Vitis Libraries.

Table II shows the JPEG encoder utilizes 21% of available

URAM and less than 14% of other resources on the Kria KV260

board. Compared to the WebP encoder, the JPEG encoder

operates at higher frequency (250 MHz vs 100 MHz) with lower

resource utilization across all categories. The WebP encoder

contains 5856 lines of HLS code compared to 1253 lines for our

JPEG encoder. This reduced complexity enables lower resource

utilization suitable for edge device deployment.

B. Comparative Evaluation

We made a baseline comparison of GStreamer pipelines

using either the libturbojpeg-based jpegenc plugin or our own

implementation. Three different pipelines were used for the

evaluation:

• cam: Provides images from a live camera feed. It uses the

v4l2src source element.

• file: Provides images from a dataset captured from the

camera. It uses the multifilesrc source element.

The camera used was an onsemi AR1335 producing 1920×1080

NV12 images at a maximum frame rate of 30 fps.

B.1. Overall Performance

We evaluated performance in terms of throughput (fps), PSNR

(Peak Signal-to-Noise Ratio), compression ratio, and CPU us-

age. Throughput was measured using the gst-perf utility [10],

while CPU usage was monitored via htop. For PSNR cal-

culation, we converted both original and encoded images to

luminance using ITU-R BT.601 [11] weights (Y = 0.299R +

0.587G + 0.114B) and calculated:

%(#' = 20 log10 (255) − 10 log10 ("(�)

where "(� is the mean squared error between luminance

values. Compression ratio represents the percentage of original

file size after encoding. The results are shown in Table III.

TABLE II

Resource Utilization Comparison of

JPEG and WebP Encoders on KV260

JPEG
WebP [3]

Total

(our work) Available

Frequency 250 MHz 100 MHz

Throughput 4.49 MPps 1.88 MPps

LUT 11,513 62,296 92,832

LUTAsMem 2,355 6,610 55,336

REG 18,150 71,227 191,197

BRAM 6 81 106

URAM 12 46 56

DSP 85 834 1248

Results show performance differences between FPGA and

CPU implementations across test scenarios. For camera input,

the FPGA achieves 19.5 fps compared to 2.6 fps for CPU-based

encoding—a 6.5× throughput difference. With file input, both

implementations perform similarly (21.7 vs 22.6 fps), while

the FPGA maintains lower CPU usage (14% vs 107%). Image

quality is comparable with PSNR values of 27.45 dB (FPGA)

and 27.72 dB (CPU), while compression efficiency is similar

(3.219% vs 3.202%). The FPGA reduces CPU usage from 93%

to 5% during camera processing, enabling workload offloading

for edge applications.

B.2. CPU Stress Testing on Single Core

We also investigated the throughput performance of the FPGA

and CPU implementations under resource-constrained environ-

ments. The experiment consisted of pinning the GStreamer

pipeline to a single core via the Linux taskset utility and

gradually increasing the CPU load stress via stress-ng. To

minimize interferences from the scheduler, we used the nice

utility to set the priority of the stress-ng process to −10.

Fig. 5 shows the throughput slowdown per CPU stress level

for the FPGA and CPU implementations under a single-core

environment. From the figure, we can see that the FPGA

implementation is more robust to CPU stress than the CPU

TABLE III

Performance Evaluation of the JPEG Encoder

CPU FPGA

(Our)

cam
Throughput (fps) 2.6 19.5

CPU Usage (%) 93 5

file
Throughput (fps) 22.6 21.7

CPU Usage (%) 107 14

Compression Ratio 3.202% 3.219%

PSNR (dB) 27.72 27.45
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Fig. 5. Slowdown During CPU Stress: The figure shows the relative

slowdown of the FPGA and CPU implementations under a single-core

environment and at various CPU stress levels.

implementation. The FPGA implementation shows a consistent

throughput performance even when the CPU is under heavy load,

while the CPU implementation shows a significant decrease in

throughput as the CPU stress level increases, peaking at around

10% slowdown for 50% CPU stress load.

B.3. Memory Stress Testing

While the CPU stress testing did not affect the FPGA imple-

mentation greatly, memory stress testing should show some

variations since the images must pass through the AXI bus,

which can be overloaded by stress. For the experiment, we

established two configurations for each pipeline:

1. Single-Core: The FPGA implementation with a single

core (CPU3 in this case).

2. Multi-Core: The FPGA implementation with multiple

cores (CPU0 through CPU3, denoted as CPU∗).

We used stress-ng with the options –vm-bytes 100M

–vm-method modulo-x to simulate memory stress. Fig. 6

illustrates the configuration of the stress testing.

Fig. 7 shows the throughput slowdown during memory stress

testing, each subfigure representing one of the pipelines. The

V4L2 source, shown at the top, presents the best performance,

with the DMA-enabled FPGA encoder reaching at worst 10.5%
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Fig. 6. Memory Stress Configuration: Four configurations for single-core or

multi-core affinity of the pipeline (CPU3, CPU*, FPGA3, FPGA*), as well as

five CPU affinity configurations for the memory stress.
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Fig. 7. Slowdown During Memory Stress: The figure shows the performance

slowdown of FPGA and CPU implementations at various memory stress afinity

configurations across each pipeline. H = 1.0 represents the baseline

performance of each configuration (CPU3, CPU*, FPGA3, FPGA*) with no

memory stress applied.

slowdown, while the CPU implementation reaches at worst as

much as 175% slowdown. The file source from system memory,

shown at the bottom, presents a more stable performance, with

the FPGA encoder reaching at worst 10.6% slowdown, while

the CPU implementation reaches at worst as much as 27.3%

slowdown.

C. Implications of Stress on FPGA and CPU Performance

The CPU and FPGA implementations exhibit different behav-

ior under both compute (CPU) and memory stress, from which

we draw the following conclusions:

(1) Compute stress is remedied by FPGA offloading

Fig. 5 shows that the GStreamer pipeline management, which

includes data acquisition from source elements and scheduling

into downstream elements, minimally affects the total through-

put, even when under compute stress. As such, offloading of the

heavy operations is enough to overcome throughput degradation.

CPU encoding, which is preemptible, has a reduced throughput

under compute stress. On multicore systems, this might be

mitigated by isolating a CPU core so as to only dedicate it to

the encoding task. However, such a solution loses viability on

more constrained systems, or systems with heavy critical tasks.

(2) Non-cacheable memory hugely impacts CPU pipelines

DMA-based sources (the cam pipeline) more deeply affect the

responsiveness of the CPU encoding implementation. We

attribute this mainly to the non-cacheable nature of DMA

addressing on the CPU. A possible countermeasure would be to
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copy the contents of the DMA buffer onto cacheable memory

before processing it.

(3) Multicore systems are more predictable with FPGA

offloading

When using input cacheable from user space (file pipeline),

the behavior of both CPU and FPGA solutions are similar when

pinned to a single core. However, when unpinned, the CPU-

based encoding pipeline shows higher instability. We attribute

this to two reasons: Firstly, when unpinned, the encoding portion

of the pipeline can execute on a separate thread at a higher core

usage, thus incurring more memory accesses per second, which

makes it more susceptible to memory congestion. Secondly,

the asymmetric nature of the CPU encoder workload across

multiple cores causes the effects of memory stress to be less

predictable.

On the other hand, the FPGA pipeline demonstrates pre-

dictable behavior when unpinned. Under the same reasoning

as above, the CPU workload involved in the FPGA pipeline is

light when compared to encoding, and as such, demonstrates

symmetrical behavior across all threads.

VII. Summary and Conclusion

In this paper, we presented a Vitis HLS-based JPEG encoder

specifically designed for edge computing applications on FP-

GAs. Our work addresses the growing demand for real-time,

resource-efficient image compression in embedded systems,

where traditional CPU-based solutions suffer from performance

degradation under load and RTL designs lack flexibility.

Our main contributions include: (1) a JPEG encoder im-

plemented with Vitis HLS optimized for edge device resource

constraints, and (2) a GStreamer plugin for integration with

Linux multimedia pipelines. The encoder implements the full

JPEG compression pipeline including MCU aggregation, DCT

with quantization, and entropy coding with serialization.

Experimental results on the AMD Kria KV260 board show

the FPGA implementation achieved 19.5 fps for camera input

and 21.7 fps for file input, while reducing CPU usage to 5%

compared to 93% for the CPU-based libjpeg implementation.

The encoder maintains image quality with a PSNR of 27.45 dB

and compression ratio of 3.2%. Resource utilization analysis

shows the design uses 21% of available URAM and less than

14% of other FPGA resources. The remaining space thus

allows for other circuits to be implemented, including multiple

encoders for parallel stream processing of multiple cameras.

Stress testing results indicate stable FPGA performance under

CPU stress conditions, while CPU-based encoding experienced

performance degradation. Memory stress testing showed 10.5%

slowdown in the worst case for the FPGA implementation,

compared to up to 175% slowdown for CPU implementations.

Integration with GStreamer enables ease of deployment in

various scenarios, including ADAS and multimedia processing

applications requiring consistent performance.

Current limitations of the architecture include fixed quan-

tization tables and single-stream processing. The encoder is

optimized for 1080p resolution; higher resolutions may require

architectural modifications. Future work could explore adap-

tive quantization techniques to improve compression efficiency,

implementation of additional image formats, and optimiza-

tion for higher resolution inputs. Additionally, investigating

multi-channel processing capabilities could further enhance

throughput for applications requiring parallel image streams.

Some of the evaluations in this work are inconclusive. An

in-depth comparison with other hardware encoders was not

performed, but could provide insights into the relative strengths

and weaknesses of our approach. The GStreamer pipelines had

a high scheduling priority during our evaluation, but in a real-

world scenario critical processes may compete for resources. In

future work, we plan to explore the impact of these factors on

the encoder’s performance and consider implementing adaptive

strategies to mitigate their effects.
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