
Compact QUBO Formulation of Resource-Constrained Operation Scheduling
in High-Level LSI Design

Haruki Yamagishi Takuto Kishimoto Kazuhito Ito

Graduate School of Science and Engineering
Saitama University

Saitama 338-8570, Japan

Abstract— Resource-constrained operation scheduling in LSI
design determines the start time of operation execution so as to
satisfy precedence constraints, and is known to be an NP-hard
combinatorial optimization problem. By formulating the opera-
tion scheduling problem as a QUBO model, it is possible to search
for an optimal operation schedule through parallel solution of the
QUBO model. This paper proposes a QUBO formulation for op-
eration scheduling that reduces the number of variables. As a
result, the number of variables was reduced by up to 65%, and
the solving time was reduced by up to 81%.

I. I NTRODUCTION

Operation scheduling in high-level large-scale integration
(LSI) design refers to determining the start time of each op-
eration (addition, multiplication, etc.) under precedence con-
straints imposed by data dependencies between operations [1].
Generally, there are multiple combinations of operation start
times that satisfy all these precedence constraints. Resource-
constrained scheduling takes into account the limitation on
the number of operations that can be executed simultaneously
due to the availability of computational resources. Figure 1(a)
shows an example data flow graph (DFG) representing oper-
ations and their dependencies, while Fig. 1(b) and (c) present
two examples of scheduling results assuming two adders and
one multiplier. As illustrated, there can be combinations of op-
eration execution times that require less total time to complete
all operations. The goal of resource-constrained scheduling is
to minimize the total execution time of all operations.

Minimizing the execution time in resource-constrained op-
eration scheduling is known to be an NP-hard combinato-
rial optimization problem. On conventional computers, solv-
ing such problems optimally requires examining all possible
combinations, which is computationally expensive. Therefore,
heuristic methods such as list scheduling [1] have traditionally
been used to find near-optimal solutions. However, solutions
obtained through list scheduling are not always optimal. For
example, in the DFG shown in Fig. 2, when the resources of
two adders and two multipliers are assumed, list scheduling
yields only a solution with an execution time of 19 (from 0 to
18) as shown in Fig. 3(a), whereas the optimal execution time
is actually 18 (from 0 to 17) as shown in Fig. 3(b).

In recent years, combinatorial optimization problem for-
mulation using the Ising model, which enables optimization

0 1

2 3 4

6 7

85

9 Data dependency

0

1
2

3

4

5

6

0

2
4

8

9

1

3
6

5

7

0

1
2

3

4

5

0

1

6

2

9

4

3

8

7

5

timeaddition

multiplication

(a) (b) (c)

Fig. 1. (a) Data-flow graph, (b),(c) possible operation schedules.

2

1

4

3

5

12

14

13

6

11

10

7

8

9 15

16

17

21

18

20

19

22

29

31

30

24

28

27

25

23

26 33

34

32

x(0) x(1)

x(2)

x(3) x(4)

x(5)

x(6) x(7)

y(0)y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

Fig. 2. 5th order wave elliptic filter (WEF).

time A0 A1 M0 M1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A1

A10

A16

A21

A15

A9

A18

A19

A6

A8

A5

A29

A14

A11

A2

A3

A27

A22

A24

A26

A23

A12

A33

A31

A28

A34

M17

M7

M13

M4

M20

M25

M30

M32

time A0 A1 M0 M1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A1

A10

A16

A21

A15

A9

A18

A19

A6

A5

A8

A12

A2

A3

A14

A11

A27

A22

A24

A26

A33

A23

A29

A34

A31

A28

M17

M7

M4

M13

M20

M25

M32

M30

(a) (b)

Fig. 3. (a) list scheduling result, (b) an optimal schedule.

through parallel processing [2], and fast solution using dedi-
cated machines [3, 4] or graphical processing unit (GPU) [5]
have attracted attention. By formulating operation scheduling
into an Ising model, it is expected that a solution can be ob-
tained quickly using a dedicated machine or a parallel com-
puter for solution. While the solution of the list scheduling
is unique and suboptimal, it is expected that the solution of

R3-3 SASIMI 2025 Proceedings

- 173 -

the formulated Ising model will allow the search for an opti-
mal operation schedule with shorter operation execution time
than list scheduling. It is known that the Ising model and the
quadratic unconstrained binary optimization (QUBO) model
can be equivalently transformed into each other. In this paper,
we propose a QUBO model formulation with the reduced num-
ber of variables for resource-constrained operation scheduling.

The remainder of the paper is organized as follows. The
proposed QUBO formulation is presented in Sect. 2. The solu-
tion of the formulated Ising model using GPU is described in
Sect. 3. Experimental results are shown in Sect. 4 and Sect. 5
concludes the work.

II. QUBO FORMULATION

Energy in the QUBO formulation consists of constraint
terms and objective terms. The constraint terms are 0 when the
solution satisfies the constraints of the problem, and positive
values otherwise. In resource-constrained operation schedul-
ing, the constraints are (1) operation execution constraints that
each operation is executed exactly once, (2) operation prece-
dence constraints to satisfy the operation execution order de-
rived from data dependencies, and (3) functional unit (FU)
constraints to ensure that the number of operations executed
simultaneously does not exceed the specified number of FUs.
The objective term is minimum when the solution is the op-
timal for the problem. Here, the optimal solution is the one
that takes the shortest time from the start of execution to the
completion of all operations. The solution with the smallest
energy satisfies all constraints and is the optimal solution for
the problem.

In the following, we propose a QUBO formulation for the
resource-constrained operation scheduling problem. First, we
explain the scheduling time range, which is the set of possi-
ble execution start times for each operation to minimize the
number of variables. Then, we propose two methods for for-
mulating the FU constraints.

A. Scheduling time range
The operation scheduling is formulated for the time range

T = [ts, te). The notation[a,b) represents the set of times
{t |a≤ t < b}. Here, the set of all operations isN, and opera-
tion i ∈N can start executing in the time rangeTi = [tsi, tei)⊂ T
due to precedence constraints and resource constraints.

A.1. Precedence constraints
Ti satisfiesTi ⊂ [ts + tasap,i , te + talap,i + 1) with as soon as
possible (ASAP) scheduling resulttasap,i and as late as possi-
ble (ALAP) scheduling resulttalap,i determined by precedence
constraints without resource constraints.tasap,i is the earliest
execution start time ofi when all operations start execution af-
ter time 0, andtalap,i is the latest execution start time ofi when
all operations finish execution before time 0, and defined as

tasap,i = max

{
max

(k,i)∈E
{tasap,k +λpk},0

}
(1)

talap,i = min

{
min

(i, j)∈E
{talap, j −λpi},−λpi

}
(2)

add

x

Fig. 4. Six additions preceding operationx.

wherepi is the function type of operationi, λp is the execution
time of an operation of typep, andE is the set of all data de-
pendencies(i, j) from operationi to operationj. The result of
maximum (max) and minimum (min) are−∞ and+∞, respec-
tively, when the argument is empty. Therefore, if there is no
preceding operation for operationi, tasap,i = 0, and if there is
no succeeding operation fori, talap,i = −λpi .

A.2. Resource constraints

The allowed time to start operation execution can be restricted
by the relationship between the DFG structure and the compu-
tational resources. In the DFG in Fig. 4,tasap,x = ts+2λadd for
operationx. However,x can start only after all the preceding
six additions have been executed. If the number of adders is
restricted to two, the time required to execute the six additions
is 6λadd/2= 3λadd, and the earliest execution start time ofx is
tsi = ts+3λadd, which is later thantasap,x.

Let Mp denote the number of FUs of operation typep. Bp,i

is the earliest execution start time of operationi determined by
the time required byMp FUs to execute operations of typep
preceding operationi. Let Prei denote the set of operations
which preced operationi on the DFG. That is, there is one or
more directed paths from the operation inPrei to i on the DFG.
The formula for calculatingBp,i is

Bp,i = max
k∈Prei
pk=p

(
tsk+

⌊
νp,ki

|Mp|

⌋
λp

)
(3)

whereνp,ki represents the number of operations of typep on all
directed paths with operationk as the start point and operation
i as the end point (excludingi). The time required to execute
νp,ki operations onMp FUs is

⌊
νp,ki/|Mp|

⌋
λp. Assuming that

operationk starts at its earliest execution start timetsk, opera-
tion i cannot start before the timetsk+

⌊
νp,ki/|Mp|

⌋
λp. There-

fore, the maximum valueBp,i calculated for all operationsk in
Prei gives the earliest execution start time of operationi ac-
cording to the number of FUs of operation typep. In addition,
PBp,i is the earliest execution start time of operationi deter-
mined by the time required to execute all typep operations
precedingi by Mp FUs.PBp,i is calculated as

PBp,i = ts+
⌊

µp,i

|Mp|

⌋
λp (4)

whereµp,i denote the number of operations of typep in Prei .
The maximum value ofBp,i and PBp,i for all p ∈ P is the
earliest execution start time of operationi with respect to the
amount of computing resources.

Similarly, Ap,i is the latest execution start time of operation
i determined by the time required to execute operations of type
p succeeding operationi onMp FUs. LetSuci denote the set of
operations which succeed operationi on the DFG. The formula

- 174 -

time

t

precedence constraint satisfied

precedence constraint violated

i

j

j

j

j
tsj

λpi

j

t+λpi

Fig. 5. Candidate start time of operationj and precedence constraint for data
dependency(i, j).

for calculatingAp,i is

Ap,i = min
j∈Suci
p j=p

(
te j−

⌊
νp,i j

|Mp|

⌋
λp

)
(5)

PAp,i is the latest execution start time of operationi determined
by the time required to execute all typep operations suceeding
i by Mp FUs.PAp,i is calculated as

PAp,i = te+
⌊

ρp,i

|Mp|

⌋
λp (6)

whereρp,i denotes the number of operations of typep in Suci .
From the above, the earliest execution start timetsi and the

latest execution start timetei of operationi are the solutions of
the following set of equations.

tsi = max

{
ts+ tasap,i , max

p∈P

{
Bp,i , PBp,i

}}
∀i ∈ N (7)

tei = min

{
te+ talap,i +1, min

p∈P

{
Ap,i , PAp,i

}}
∀i ∈ N (8)

B. FU binding method

Focusing on the fact that each FU executes at most one op-
eration at a time, the operator constraints can be formulated by
explicitly considering the binding between each operation and
the FU to execute it. This QUBO formulation is called the FU
binding method. The QUBO formulation was proposed in [6]
and briefly reviewed here. In this method, a binary variable
xi,t,m has the following property.

xi,t,m =
{

1 if operationi starts at timet onmth FU
0 otherwise

(9)

Operation execution constraint Each operation is executed
exactly once at any time in any FU. This operation execution
constraint is formulated by the following equation.

HE = ∑
i∈N

(
∑
t∈Ti

Mpi

∑
m=1

xi,t,m−1

)2

(10)

For operationi, the sum of variablesxi,t,m for all possible exe-
cution start timest ∈ Ti and allMpi FUs(1≤ m≤ Mpi) which
can executei is 1 wheni is executed exactly once. Therefore,
subtracting 1 and squaring the sum results in 0 when the op-
eration execution constraint is satisfied and positive when it is
violated. By taking the sum for all operations,HE = 0 when
the operation execution constraint is satisfied for all operations
andHE > 0 when any operation violates the constraint.

time

t

FU constraint violated at t

i

j

j

λpj

t−λpj+1
j

Fig. 6. Candidate start time of operationj to violate the FU constraint with
operationi starting at timet.

Operation precedence constraint When there is a data de-
pendency from operationi to operationj, j must start execut-
ing afteri has finished executing. This is the operation prece-
dence constraint, which is formulated as follows.

HP = ∑
(i, j)∈E

∑
t∈Ti

 Mpi

∑
m1=1

xi,t,m1 × ∑
u∈Ri, j,t

Mpj

∑
m2=1

x j,u,m2

 (11)

When the operation execution constraint is satisfied for oper-

ation i, ∑
Mpi
m1=1xi,t,m1 = 1 if i starts execution at timet, and

∑
Mpi
m1=1xi,t,m1 = 0 otherwise. Wheni starts execution at time

t, i ends at timet + λpi , and j must start execution at or after
t +λpi to satisfy the operation precedence constraint as shown
in Fig. 5. Considering the scheduling time range ofj, the time
setRi, j,t is defined as

Ri, j,t =
{

u| ts j ≤ u≤ min(t +λpi −1, te j−1)
}

(12)

When j starts execution at any timeu in Ri, j,t , ∑
Mpj
m2=1x j,u,m2 = 1

and it means thatj starts execution beforet + λpi . Therefore,

for time t, if ∑
Mpi
m1=1xi,t,m1 = 1 and∑u∈Ri, j,t ∑

Mpj
m2=1x j,u,m2 = 1,

that is, if the product of the two terms is 1, the operation prece-
dence constraint is violated. Otherwise, the product is 0, and
HP = 0 when operation precedence constraints are satisfied for
all data dependencies. If any operation precedence constraint
is violated,HP > 0.

FU constraint Each FU cannot execute more than one opera-
tion at the same time. This FU constraint is formulated by the
following equation.

HR = ∑
p∈P

 ∑
i, j∈Np

i 6= j

∑
t∈Ti

Mpi

∑
m=1

(
xi,t,m× ∑

u∈Q j,t

x j,u,m

) (13)

The execution duration of operationj is λp j . When j starts
execution at timew, an FU is used from timew to time w+
λp j −1. The set of timesQ j,t is defined as

Q j,t = {u| max(t −λp j +1, ts j) ≤ u≤ min(t, te j−1)} (14)

If j starts execution at any timeu ∈ Q j,t , an FU is used to
executej at time t as shown in Fig. 6. When operationi of
the same typep j (pi = p j) starts execution in themth FU att,
xi,t,m = 1. At the same time, if∑u∈Q j,t

x j,u,m = 1, i and j are
being executed in the samemth FU att, and it means the FU
constraint is violated.

When the number of operations executed simultaneously is
at most 1 in all the FUs,HR = 0, and when the FU constraint
is violated,HR > 0.

- 175 -

Objective The objectiveHc is the sum of the execution times
of all operations, and whenHc is minimized, it is expected that
the execution completion time of the last operation to be exe-
cuted will be minimized and the derived schedule is optimal.

Hc = ∑
i∈N

∑
t∈Ti

t ×
Mpi

∑
m=1

xi,t,m (15)

The number of variables Each operationi needs|Mpi ||Ti |
variables to check the violations of the FU constraints for all
time rangesTi . Hence the total number of variables in this
formulation is

∑
i∈N

|Mpi ||Ti | (16)

C. Operation counting method

In the above-mentioned FU binding method, the FU con-
straint is satisfied by ensuring no more than one operations are
executed simultaneously in each FU. Since variablesxi,t,m are
prepared for all combinations of operations, time, and FUs, the
number of variables increases. We propose a formulation that
constrains the number of operations executed simultaneously
to be less than or equal to the number of FUs, thereby reducing
the number of variables. This formulation is called the opera-
tion counting method.

Binary variables ¯xi,t andyp,m,t are employed.

x̄i,t =
{

1 if operationi starts at timet
0 otherwise

(17)

yp,m,t =
{

1 if mth FU of typep is used at timet
0 otherwise

(18)

Operation execution constraint Each operation is executed
exactly once at any time in any FU. This operation execution
constraint is formulated by the following equation.

HE = ∑
i∈N

(
∑
t∈Ti

x̄i,t −1

)2

(19)

Operation precedence constraint When there is a data de-
pendency from operationi to operationj, j must start execut-
ing after i has finished executing. The operation precedence
constraint is formulated by the following equation.

HP = ∑
(i, j)∈E

∑
t∈Ti

(
x̄i,t × ∑

u∈Ri, j,t

x̄ j,u

)
(20)

If i starts execution at timet, x̄i,t = 1. If j starts execution at
any timeu∈ Ri, j,t , that is, j starts before the execution ofi fin-
ished,∑u∈Ri, j,t

x̄ j,u = 1. In that case the precedence constraint
is violated andHP > 0.

FU constraint When operationi starts execution at timeu∈
Qi,t , an FU is used at timet to executei. Hence execution
of i uses an FU at timet if ∑u∈Qi,t

x̄i,u = 1. The number of
operations of typep executed at timet is obtained as

Kp,t = ∑
i∈Np

∑
u∈Qi,t

x̄i,u (21)

1: input: (S, F , h, J, Thot, Tcold, Ratio, Repeat)
2: initialize all σi ∈ S
3: for T from Thot to Tcold multiplied byRatio
4: for repeatfrom 1 toRepeat
5: for S′ ∈ F
6: for σi ∈ S′ in parallel
7: δi ← hi

8: for σ j ∈ S, j 6= i in partially parallel
9: δi ← δi +Ji j σ j

10: ∆H ←−2δiσi

11: randomvalue← random value of [0,1)
12: if exp(−∆H/T) > randomvalue
13: σi ←−σi

Fig. 7. Pseudo code of Ising annealing.

Kp,t must be less than or equal toMp and the FU constraint is
formulated by the following equation

HR = ∑
p∈P

∑
t∈T(p)

(
Kp,t −

Mp

∑
m=1

yp,m,t

)2

(22)

whereT(p) is the set of times at which the maximum number
of FUs used by operations of typep may exceedMp. Yp,t =

∑Mp
m=1yp,m,t takes a value from 0 toMp according to the combi-

nation ofyp,m,t values. WhenKp,t ≤ Mp, yp,m,t are set to 0 or 1
accordingly so thatYp,t = Kp,t and henceKp,t −Yp,t = 0. When
Kp,t > Mp, that is, FU constraint is violated,Kp,t −Yp,t > 0.
HR = 0 if all the FU constraints are satisfied.

Objective The objectiveHc is the sum of the execution times
of all operations, and whenHc is minimized, it is expected that
the execution completion time of the last operation to be exe-
cuted will be minimized and the derived schedule is optimal.

Hc = ∑
i∈N

∑
t∈Ti

t × x̄i,t (23)

The number of variables The required number of variables
x̄i,t is ∑i∈N |Ti |. The number of variablesyp,m,t is |Mp||T(p)|
for each operation typep, so the total number of variables is
∑p∈P |Mp||T(p)|. Consequently, the required number of vari-
ables for this method is

∑
i∈N

|Ti |+ ∑
p∈P

|Mp||T(p)| (24)

A DFG can generally be considered as|N| À |P|. In the FU
binding method, the number of variables is about|N||M||T|,
whereas in the operation counting method, the number of vari-
ables is about|N||T| + |P||M||T|. Therefore the operation
counting method is expected to require less variables than the
FU binding method.

III. A NNEALING OF ISING MODEL ON GPU

The QUBO model can be converted to an Ising model by
associating each QUBO variablexi with the Ising model vari-
ableσi asxi = (σi +1)/2 [2]. The correspondence between the
variables and energy remains unchanged before and after this
conversion, and they are converted into an equivalent energy

- 176 -

equation. Therefore, QUBO can be optimized by optimizing
the converted Ising model.

The converted Ising model is solved using a GPU. Figure 7
shows the pseudocode for solving the parallelized Ising model
by simulated annealing [7]. Here,S is the set of all spinsσi ,
F is the set of all subsets that completely divideS, h is the
external magnetic field,J is the mutual coupling coefficient,
Thot is the starting temperature,Tcold is the ending temperature,
Ratiois the temperature change ratio, andRepeatis the number
of repetitions at the same temperature.

Completely dividingS means thatJi j = 0 for all pairs of
spinsσi ,σ j of each elementS′ of F . Only the spins included
in each elementS′ of F are updated in parallel at the same
time. This is to prevent the occurrence of loops that do not
reach the optimal solution when mutually coupled spins are
updated at the same time. An example of a loop that does
not reach the optimal solution is as follows. The minimum
value of the energy ofH = σ1σ2 +σ2σ3 is H = −2, but when
(σ1,σ2,σ3) = (1,1,1) andH = 2, all spins are updated to−1 at
the same time, resulting in(σ1,σ2,σ3) = (−1,−1,−1), which
remains atH = 2, and then is updated to(σ1,σ2,σ3) = (1,1,1),
and this process is repeated. In this way, updating all spins
at the same time can result in a state where two states oscil-
late. By introducingF , the group of spins that are updated
simultaneously in parallelization is limited to spins that have
no mutual coupling.

Consequently, the QUBO model is formulated for a given
operation scheduling problem and converted to the Ising
model, andF is obtained on a processor. Then the anneal-
ing of the Ising model is performed on a GPU.

Time To Solution (TTS) is the time it takes to find the op-
timal solution with a probability ofpR [8]. If the probability
of finding the optimal solution in one solution isps, then the
probability of finding the optimal solution at least once inR
solution attempts is 1− (1− ps)R. Therefore, when this ispR,
R is given as follows.

R=
ln(1− pR)
ln(1− ps)

(25)

Thus TTS isRτ if the time of one solution attempt isτ.

IV. EXPERIMENTAL RESULTS

A. Conditions
The DFGs used in the experiments are shown in Figs. 8 to 10

and Fig. 2. The specifications of the DFGs are shown in Table
I. Shown in Table I are from left to right, the name of DFG,
the number of additions|NA|, the number of multiplications
|NM|, the numbers of addersMA and multipliersMM given as
resource constraints, the operation execution timeLSobtained
by list scheduling, and the minimum operation execution time
SSobtained by integer programming, i.e., the optimal value of
the operation execution time. It is assumed that an addition
takes 1 unit of time (u.t.) and a multiplication takes 2 u.t., and
the FUs are not pipelined. The goal of the proposed method is
to obtain an operation execution time that matchesSSfor each
DFG by simulated annealing of the Ising model converted from
the QUBO model.

3

4

5

6

11

12

13

14

1

2

9

10

7

8

x(0)

x(1)

x(2)

x(3)

X(0)

X(1)

X(2)

X(3)

multiplicationaddition

Fig. 8. DFG A.

1

2

3

4

6

8

10

12

5

7

9

11

22

24

26

28

21

23

25

27

14

16

18

20

13

15

17

19

30

32

34

36

29

31

33

35

38

40

42

44

37

39

41

43

x(0)

x(1)

x(2)

x(3)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(4)

x(5)

x(6)

x(7)

Fig. 9. DFG B.

2 10 26

1 9 25

3 11 30 27

28
31

4 12 32 29

6 22 19 34 38

20 23

7 24 21 35 39

5 16

13

33 37

14 17

8 18

15 36

40

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

y(0)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

Fig. 10. 8-point DCT (DCT8).

TABLE I
DATA -FLOW GRAPHS

DFG |NA| |NM | MA MM LS SS
DFG A 8 8 1 2 8 8
DFG B 24 20 2 4 12 12
DCT8 27 13 4 4 9 9
WEF 26 8 2 2 19 18

The energy used in solving the problem is defined as

H = aHc +αHE +βHP + γHR (26)

wherea,α,β ,γ are positive coefficients. These coefficients
represent the strength of the influence of the terms in solving
the problem.

The experiments were done on a PC with an Intel Core i9-
12900 processor and an NVIDIA GeForce RTX 3060 GPU.
The QUBO models were generated using the CPU, and there
was no significant difference in generation time between the
FU binding method and the operation counting method. The
parameters used in the annealing are shown in Table II.

- 177 -

TABLE II
PARAMETERS FOR ANNEALING

solutions 10000
Thot 50
Tcold 0.5
Ratio 0.9998
Repeat 10

104

864

680

328

74

300
170 16421

66

64 64

0

200

400

600

800

1000

FU binding

Op count (op)

Op count (FU)

DFG

DFG A DFG B DCT8 WEF

th
e

 n
u

m
b

e
r

o
f
v
a

ri
a

b
le

s

-8.6%

-57.6%

-65.6%

-30.4%

Fig. 11. The number of QUBO variables.

0

20

40

60

80

100

120

140

DFG

DFG A DFG B DCT8 WEF

a
n

n
e

a
lin

g
 t
im

e
 [
m

s
]

FU binding

Op count

-7.4%

-51.1%

-81.6%

-62.7%

Fig. 12. The average GPU annealing time.

B. Evaluation of the proposed models

For each DFG, list scheduling was performed to obtainLS,
and then the QUBO model was formulated withts = 0 and
te = LS+ 1. This is becauseSSis always less than or equal
to LS. The number of variables used in the formulation using
the FU binding method and the proposed operation counting
method is shown in Fig. 11. In Fig. 11, ‘FU binding’ represents
the number of variablesxi,t,m used in the FU binding method,
‘Op count (op)’ represents the number of variables ¯xi,t used in
the operation counting method, and ‘Op count (FU)’ represents
the number of variablesyp,m,t used in the same method. The
operation counting method reduces the number of variables by
up to 65% compared to the FU binding method. The reduction
rate of the number of variables is higher when the number of
FUs specified as constraints is large.

The average time for 10000 solution runs on the GPU is
shown in Fig. 12. The operation counting method reduces the
time up to 81% compared to the FU binding method.

The experiment confirmed that the operation counting
method reduces the number of variables in the QUBO for-
mulation of operation scheduling compared to the FU binding
method, thereby reducing the time required for one solution
attempt.

TABLE III
ENERGY WEIGHTS AND TTS FOR pR = 0.99

DFG method a α β γ τ [ms] R Rτ [ms]
DFG A FUbind 1.1 10 4 6 6.736 2 13.47
DFG A OpCnt 0.8 10 8 4 7.865 5 39.33
DFG B FUbind 1.0 14 8 12 120.6 5 603.1
DFG B OpCnt 1.0 15 10 8 60.25 686 41333
DCT8 FUbind 0.9 10 8 8 92.55 4 370.2
DCT8 OpCnt 0.9 12 12 4 16.69 227 3788
WEF FUbind 1.0 20 14 16 27.78 5 138.9
WEF OpCnt 1.0 20 10 4 10.32 21 216.8

C. Solution results
Table III shows a comparison of TTS atpR = 0.99 for the so-

lution results of each DFG and each formulation method. The
energy coefficientsa, α, β , andγ are the combinations found
by grid search that obtain the optimal solution most times.

The operation counting method is at a disadvantage in TTS
compared to the FU binding method. The biggest difference
in energy between the FU binding method and the operation
counting method is the FU constraint. This constraint term
may make the energy landscape difficult to solve. Therefore,
it is thought that TTS can be improved by expressing the FU
constraint of the operation counting method differently from
the current one.

V. CONCLUSIONS

In this paper, a QUBO model formulation for resource-
constrained operation scheduling in high-level design of LSIs
was proposed. The number of variables is reduced up to 65%
and the solution time is reduced by up to 81% by the operation
counting method compared to the FU binding method. TTS of
the operation counting method is longer than the FU binding
method and it is necessary to reduce the TTS of the operation
counting method. The objective of optimization in this work
is the sum of the execution start times of all operations. For
minimizing the time from the start of operation execution to
the completion of all operation execution, the objective should
be changed. This remains as future work.

REFERENCES
[1] R. Walker and S. Chaudhuri, “Introduction to the scheduling problem,”

IEEE Design & Test of Computers, vol.12, no.2, pp.60–69, 1995.
[2] A. Lucas, “Ising formulations of many NP problems,” Frontiers in

physics, vol.2, no.5, pp.1–15, 2014.
[3] M. Yamaoka, T. Okuyama, M. Hayashi, C. Yoshimura, and T. Takemoto,

“CMOS annealing machine: an in-memory computing accelerator to pro-
cess combinatorial optimization problems,” 2019 IEEE Custom Integrated
Circuits Conference (CICC), pp.1–8, 2019.

[4] Y.H. Chen, C.A. Chou, C.F. Nien, and S.Y. Lin, “Design and implementa-
tion of a VLSI-based annealing accelerator for efficiently solving combi-
natorial optimization problems,” IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, vol.71, no.9, pp.4291–4295, 2024.

[5] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S.X.D. Tan, “GPU based
parallel Ising computing for combinatorial optimization problems in VLSI
physical design,” arXiv preprint arXiv:1807.10750, 2018.

[6] T. Kishimoto and K. Ito, “Ising model formulation of operation scheduling
in LSI design,” IEICE Conferences Archives, The Institute of Electronics,
Information and Communication Engineers, 2023. in Japanese.

[7] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi, “Optimization by simu-
lated annealing,” Science, vol.220, no.4598, pp.671–680, 1983.

[8] Jij Inc., “Annealing algorithm evaluation and openjij benchmarking capa-
bilities.” https://tutorial.openjij.org/en/tutorial/004-Evaluation.html. Ac-
cessed: 2025-05-16.

- 178 -

