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Abstract—This paper proposes an efficient method
for implementing multi-input adders on FPGAs,
which are essential components in multipliers and
neural networks, by hierarchically connecting 6-input
2-output adders. One major approach for FPGA
implementation of multi-input adders involves con-
structing a tree of carry-save adders using General-
ized Parallel Counters (GPCs) optimized through in-
teger linear programming. However, many GPCs with
a lowest-level input of 7 often consume two units of
FPGA slices (basic FPGA components) resulting in
reduced efficiency. In this research, we utilize the
GPC (6,0,7;5), which achieves the highest bit reduc-
tion rate and can be implemented in a single slice only
when the carry outputs are chain-connected. By cas-
cading this GPC, we construct a 6-input, 2-output
adder. These adders are then arranged into a carry-
save tree structure to perform multi-input addition.
Based on this method, we designed circuits to add
m binary numbers of n bits for n = 16,32,64 and
m = 16,32, ...,512, targeting the Xilinx 7 Series FPGA.
The results demonstrates that, on average, the pro-
posed method reduced the circuit area by 8.9%, the
critical path delay by 6.7%. The time required for
circuit construction to less than 0.001% compared to
conventional methods.

I. INTRODUCTION

Multi-input addition, which computes the sum of mul-
tiple binary numbers, is a core operation for construct-
ing various arithmetic circuits such as multipliers and
multiply-accumulate (MAC) units. In recent years, its
significance has grown particularly in the context of hard-
ware acceleration for neural networks.

The implementation of multi-input addition as a com-
binational circuit has long been studied. A representa-
tive method is to construct a tree of carry-save adders
using 3-input 2-output full adders as the basic building
blocks [1][2]. However, when considering implementation
on LUT-based FPGAs, circuits based on full adders do
not necessarily map well onto 5- or 6-input LUTs.

For this reason, methods have been proposed that use

extended full-adders with 6-inputs and 3-outputs [3], or
adders called generalized Parallel Counters (abbreviated
as GPC hereafter), which allow input weights not only
of 1 but also of powers of 2, as the basic components.
FPGAs are equipped with carry-lookahead circuits (carry
logic) to efficiently handle addition and subtraction, and
by utilizing this feature, GPCs can be implemented effi-
ciently. Especially for Xilinx 7 Series, research has been
conducted to implement a GPC in a single “slice”, which
consists of multiple LUTs and the carry logic [4][5][6][7]-

A tree of carry-save adders based on GPCs is referred
to as a compressor tree. Because a compressor tree is a
complex structure composed of multiple GPCs with vary-
ing input/output specifications, heuristic algorithms and
formulations based on integer linear programming have
been proposed to obtain circuit configurations with min-
imal depth and area [4][5][8].

However, the previously proposed methods are consid-
ered to have two issues. First, the most efficient GPCs
are not necessarily utilized. Among the GPCs that can
be implemented within a single slice of the Xilinx 7 Se-
ries, the one with the greatest circuit size reduction effect
is the 13-input, 5-output GPC (6,0,7;5). However, this
GPC can only be implemented in a single slice when its
carry outputs are connected in a chain, and thus it has
not been employed in conventional compressor tree con-
struction methods. Second, obtaining the optimal circuit
configuration requires solving an optimization problem,
which incurs a high computational cost.

In this paper, we propose a method for constructing
multi-input adders that addresses these two issues. The
proposed method ensures the implementation of the GPC
(6,0,7;5) within a single slice while determining the circuit
configuration with low computational overhead. First,
by chaining GPC (6,0,7;5) units, a “6-2 adder” is con-
structed, which outputs the sum of six binary numbers as
two binary numbers. A multi-input adder is then built by
hierarchically connecting these 6-2 adders in a tree struc-
ture. Owing to the intensive use of highly efficient GPCs
in terms of circuit area reduction, the resulting circuit re-
quires fewer slices than conventional methods. Moreover,
the circuit structure is regular and does not require solv-
ing complex optimization problems, resulting in negligible
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Fig. 1. FPGA slice model assumed in this paper [9]

computation time for generating the circuit configuration.

We implemented a multi-input adder based on the pro-
posed method and compared it with conventional meth-
ods. As a result, the circuit area was reduced by 8.9%,
the critical path delay was reduced by 6.7%, and the time
required to generate the circuit configuration was reduced
to less than 0.001%.

The rest of this paper is structured as follows. Sec-
tion 2 introduces the target FPGA model, the GPC-based
multi-input adder architecture, and the properties of the
GPC (6,0,7;5). Section 3 describes the implementation
of a 6-2 adder using the GPC (6,0,7;5) and a method for
constructing multi-input adders. Section 4 evaluates the
proposed circuits in terms of area and critical path de-
lay, comparing them with conventional methods. Section
5 concludes the paper and outlines directions for future
work.

II. FPGA IMPLEMENTATION OF MULTI-INPUT
ADDERS

A. LUT-based FPGA

In this paper, following prior works [4][5][8], we assume
an FPGA model composed of logic blocks (slices) made up
of LUTSs and carry logic, as illustrated in Fig. 1. A typical
example of such an FPGA is the Xilinx 7 Series FPGA
[9]. A “slice” consists of four 6-input 2-output LUTs and
one 4-bit carry chain. LUT( to LUTj3 each generate a
carry generate signal g; and a carry propagate signal p;,
which are input into the CARRY4 unit.

Since the carry logic is implemented as embedded cir-
cuitry, its delay is smaller than that of circuits constructed
using LUTs. A long carry chain can be formed by con-
necting the cout port of one slice to the cin port of an-
other. Even when the chain is long, if the slices are placed
adjacently, the delay can be kept low.

B. Multi-input adders and generalized parallel counters

Efficient methods for implementing multi-input adders
include constructing carry-save adder trees using 3-input,
2-output full adders as basic building blocks, such as the
Wallace tree [1] and the Dadda tree [2]. However, when
targeting FPGA implementation, 3-input full adders are
not well suited to 5- or 6-input LUT architectures. Fur-
thermore, effectively utilizing fast carry chains presents
an additional challenge.

TABLE 1
GPCs IMPLEMENTABLE WITH A SINGLE SLICE

GPC Ref.
(6,0,6;5) (1,3,2,5;5) []
(1,3,5:4)  (6,0,7;5) (2,1,1,7;5) 5]
(7:3) (1,5:3) (1,4,0,6:5) (1,4,1,5:5) [6]
(1,2,6:4)  (4.2,55) (1,24,4;5) (1,3,1,6;5) (1,3,3,4;5) [7]

To address this, FPGA-oriented implementation meth-
ods have been proposed that use extended adders, such as
6-input, 3-output adders, or generalized parallel counters
(GPCs), which allow inputs with binary-weighted values,
as basic building blocks. The input/output configuration
of a GPC is typically denoted in the form GPC (2,1,5;4),
which indicates that the GPC takes two inputs with a
weight of 4, one input with a weight of 2, and five inputs
with a weight of 1, and produces a 4-bit binary output
representing their weighted sum.

To make effective use of the carry logic and direct wiring
within a slice, many studies have been conducted on im-
plementing GPCs within a single slice based on the model
shown in Fig. 1. Table. I lists GPCs that are known to
be implementable in a single slice.

C. FPGA implementation of compressor trees

A carry-save addition tree using GPCs is referred to as
a compressor tree.

In FPGA implementations of multi-input adders, a
common approach is to reduce multiple binary numbers
all the way down to two using a compressor tree, and then
compute the final sum using a row adder that leverages
the carry chain [4][5][8]. Figure 2 illustrates the circuit
structure for summing m binary numbers of n bits each.
The multiple GPCs in the center of the figure form the
compressor tree which reduces the input to two rows. The
row adder then adds these two rows to produce the final
output.

Since the row adder is a carry-propagate adder (a ripple
carry adder) as shown in Fig. 3, the delay is proportional
to the bit width. Therefore, under the assumption of
using such a row adder, the critical path delay of the
multi-input adder implemented with a compressor tree
becomes the sum of the compressor tree depth and the
carry chain length of the row adder, resulting in an order
of O(logm + n).

Using a carry look-ahead adder for the final addition
can reduce the delay order to O(logm + logn). However,
since the delay of the carry chain is smaller than that of
LUTs, a ripple-carry adder achieves lower actual delay for
up to around n = 256 bits.

Compressor trees are composed of multiple types of
GPCs with different input/output configurations, mak-
ing their structure complex. Therefore, heuristic algo-
rithms and formulations as integer linear programming
(ILP) problems have been proposed to construct compres-
sor trees with minimal depth and minimal circuit area
[4][5][8]. However, methods based on ILP require long
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Fig. 2. Compressor tree

computation times, and when the values of n or m be-
come large, it becomes infeasible to obtain the optimal
solution.

D. Generalized parallel counter (6,0,7;5)

In a compressor tree, GPCs serve to reduce the number
of bits in the inputs and intermediate results. For exam-
ple, GPC (1,3,2,5;5) takes 11 input bits and produces 5
output bits, achieving a reduction ratio of 5/11. Similarly,
GPC (6,0,7;5) takes 13 input bits and produces 5 output
bits, achieving a reduction ratio of 5/13. Therefore, us-
ing GPCs with high bit-reduction efficiency that can be
implemented in a single slice leads to smaller circuit size,
as well as fewer stages.

Among the known GPCs implementable in a single
slice, the one with the highest bit-reduction efficiency is
GPC (6,0,7;5), with 13 inputs and 5 outputs. Its imple-
mentation is shown in Fig. 4. GPC (6,0,7;5) inputs one
of the seven least significant bits to the cin port, while
the remaining six least significant bits and the six most
significant bits are each input to two LUTs as shown in
the figure.

However, this GPC can be implemented in a single slice
only if the carry output from another GPC’s cout port
is connected to its cin port. Otherwise, it consumes two
slices.

In compressor trees, the carry output from a lower GPC
is not always connected to the carry input of a higher
GPC. In such cases, GPC (6,0,7;5) will require two slices
for implementation, meaning its bit-reduction efficiency
cannot be fully exploited.

III. MurTti-INPUT ADDER BASED ON TREE
CONNECTION OF 6-INPUT 2-OUTPUT ADDERS

In this paper, we propose an efficient FPGA imple-
mentation method for multi-input adders that fully ex-
ploits the GPC (6,0,7;5). By chaining instances of GPC
(6,0,7;5), which provides the highest bit reduction effi-
ciency, we construct a 6-input, 2-output adder, while en-
suring that each GPC can be implemented within a sin-

gle slice. These adders are then connected in a carry-save
structure to build a multi-input adder capable of summing
multiple binary numbers.

Compared to conventional methods, the proposed ap-
proach improves bit reduction efficiency per slice, which
is expected to reduce the overall circuit area of the multi-
input adder. In addition, since the circuit structure is
regular, there is no need to solve complex optimization
problems, allowing the circuit configuration to be deter-
mined in a short computation time.

A. Construction of a 6-2 adder using the generalized par-
allel counter (6,0,7;5)

As shown in Fig. 5, by connecting the cout output of a
GPC (6,0,7;5) to the cin input of the next GPC (6,0,7;5),
a circuit can be constructed that receives six input bits
every other digit and outputs their sum as a single binary
number. Here, since the carry from the lower GPC is
always input to the least significant digit of the next GPC,
each GPC (6,0,7;5) can be implemented within a single
slice.

A 6-input 2-output adder is constructed by placing two
adders of the type shown in Fig. 5 to handle odd and
even digit positions, respectively. The circuit structure
is illustrated in Fig. 6. The black and red portions each
represent the adder shown in Fig. 5. By shifting them
by one bit and aligning them, a circuit that adds six bi-
nary numbers and outputs two binary numbers can be
constructed.

The example in Fig. 6 assumes that the number of in-
put digits is even. When the number of digits is odd,
GPC (7;3) is used instead of GPC (6,0,7;5) for the most
significant digit. While this does not change the number
of slices used, it optimizes the number of LUTSs required.

The 6-input 2-output adder constructed in this manner
will be referred to as the 6-2 adder hereafter.

B. Multi-input adder using 6-2 adders

A multi-input adder is constructed by connecting the
6-2 adders described in the previous section in a tree struc-
ture.

The overall structure of a multi-input adder that sums
m binary numbers of n bits each into a single binary num-
ber is shown in Fig. 7. The thick-framed section in the
center of the figure shows the tree-structured connection
of 6-2 adders, which reduces the m inputs down to two
rows. The “Row Adder” adds these two binary numbers
using a method similar to the final stage of the compressor
tree version and outputs the result.

The structure of the tree connection of 6-2 adders is
illustrated in Fig. 8. In the first stage, each 6-2 adder
outputs two values, and in the second stage, three of those
outputs are grouped as inputs to another 6-2 adder. By
repeating this process, m binary numbers of n bits can be
reduced to two binary numbers.
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Fig. 3. Implementation of row adder
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When the number of inputs is exactly 2 x 3", a 6-2
adder tree of h stages can be constructed. If the number
of inputs does not match this value, a tree of 2-1 adders
(i.e., row adders) is used to reduce the number of binary
inputs to 2 x 3", which are then provided as inputs to the
h-stage 6-2 adder tree.

The order of the critical path delay (i.e., the number
of GPC stages) in each level is O(n). However, since the
i-th bit output of one stage is input to the i-th bit of the
next stage (not the least significant bit), the overall delay
order for the 6-2 adder tree is O(logm + n). As a result,
the delay order of the entire multi-input adder, including
the row adder, is equivalent to that of a compressor tree.

The computational cost of constructing the tree using
the algorithm in this section is proportional to the number
of inputs m, and each 6-2 adder depends on the bit width
n. Thus, the total complexity of building a multi-input
adder for m n-bit numbers is O(mn), which is significantly
lower than that of solving an integer linear programming
problem for compressor tree construction.
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Fig. 7. Multi-input adder using 6-2 adders

IV. EXPERIMENTAL RESULT

Based on the proposed method, we have implemented
multi-input adders in Verilog HDL which outputs the sum
of m binary numbers of n bits as a binary number. The
resulting Verilog HDL descriptions were synthesized and
placed /routed using Xilinx Vivado 2023.2 targeting Artix-
7 (xc7al00tcsg324-3). Logic synthesis was performed us-
ing the default settings (”Vivado synthesis defaults” and
”Vivado implementation defaults”), and the default value
was used for the target clock frequency.

For comparison, we designed circuits using the con-
ventional compressor tree construction method described
in [8]. We also generated circuits through logic synthe-
sis from a simple Verilog HDL description using addi-
tion operators. The structure of the compressor tree was
obtained by solving an ILP problem using IBM ILOG
CPLEX Studio 22.1 with the GPC set shown in Table II.
The solver was executed on an AMD Ryzen 9 3900X with
a time limit of 3600 seconds. In the logic synthesis-based
method, logic circuits are generated from Verilog HDL
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Fig. 8. Tree connection of 6-2 adders

description such as dst = srcl + src2 +..
without incorporating any external modules.

.+ srcm ,

The results of the logic synthesis are summarized in Ta-
ble III. Here, “#Slice” indicates the number of slices used,
“Delay” represents the critical path delay, and “Time”
denotes the computation time required to determine the
circuit configuration.

In most cases, the proposed method outperformed the
conventional compressor tree-based method in both the
number of slices and delay. On average, the number of
slices was reduced by approximately 8.9%, and the delay
by about 6.7%. Moreover, the computation time for de-
termining the circuit structure was reduced to less than
0.001% compared to the conventional method, as it does
not require solving an integer linear programming prob-
lem. Compared to the method using the ‘+‘ operator, the
number of slices was reduced by 10.4% on average, and
the delay was reduced by approximately 16.8%.

The reduction in circuit size achieved by the proposed
method is primarily attributed to the implementation of
the GPC (6,0,7;5)—which offers the highest bit reduction
rate among existing GPCs—within a single slice, as well
as to the fact that the majority of the multi-input adder
is constructed using this GPC. As for delay, although the
number of GPC stages on the critical path is nearly the
same in both the proposed and conventional methods,
the key factor contributing to the improvement is that,
in the proposed method, a larger portion of the critical
path passes exclusively through the carry chain without
traversing any LUTs.

Furthermore, when we replaced the final-stage adder
in the multi-input adder from a carry-propagation adder
to a carry look-ahead adder, the delay increased in all
cases: on average, the delay increased by 27.1% with
the proposed method and by 30.6% with the conventional
method.

TABLE II
GPC SET USED FOR CONVENTIONAL METHOD |[8]

(1;1) (3:2) (7:3) (1,53)  (2,1,1,6,5)
(2,3;3)  (6,2,3:5) (6,0,6:5) (22,2,35)  (2,1,54)
(6,1,55)  (1,4,1,55) (1,40,65) (1,1,635)  (2,2:3:4)
(1,3,2,5:5)  (1,34,35)  (2,1,355)  (1,3,514)  (1,1,7:4)
(1,4,2,3:5)  (2,0,7:4)

V. CONCLUSION

In this paper, we have proposed a construction method
for multi-input adders based on 6-2 adders. By connect-
ing GPC (6,0,7;5) in a chained manner, we ensured its
implementation within a single slice and constructed a
6-2 adder. These adders were then connected in a tree
structure to realize a multi-input adder.

As a result of constructing the multi-input adder based
on the proposed method, the circuit size was reduced by
an average of 8.9% and the critical path delay by an av-
erage of 6.7% compared to conventional methods. The
time required for circuit construction was suppressed to
less than 0.001% of that of the conventional method.

The proposed method is considered to have practical
value in that it enables efficient FPGA implementation
of multi-input adders without solving optimization prob-
lems.

The proposed method can be applied to simple summa-
tion of multiple values, but it cannot be directly applied
to cases such as summation of partially shifted binary
numbers in multiplication circuits. Furthermore, since
the method assumes that all numbers are added using
combinational circuits (in a single clock cycle), it is not
compatible with sequential inputs or pipelined processing.
Extending the proposed method to accommodate various
application forms remains a subject for future work.
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