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Abstract— SIFT’s rotation operation is sequential

and therefore becomes a bottleneck in hardware im-

plementations. We divide the descriptor region into

36 small regions, compute orientation histograms in-

dependently, and sum them into 17 subregion his-

tograms, enabling 36-way parallel processing. This

enables fast execution and high matching accuracy

under accuracy-oriented parameter settings. Further-

more, we present the RTL design of the feature de-

scriptor generator and perform logic synthesis with

FreePDK45, achieving up to 31.8× speedup compared

with the method proposed in previous research.

I. Introduction

Feature extraction plays an important role in various
fields such as autonomous driving, robot vision, and med-
ical image processing. Among these, the Scale-Invariant
Feature Transform (SIFT) [1] has been widely used as
a feature extraction algorithm that provides scale invari-
ance, rotation invariance, and high matching accuracy [4].
However, SIFT incurs high computational and memory
costs, and in particular, the operation that rotates the
region surrounding the keypoint to align with the direc-
tion of maximum intensity change is sequential, becom-
ing a processing speed bottleneck in hardware implemen-
tations [2][9]. To address this issue, research aimed at
accelerating SIFT feature descriptor generation has been
progressing [10][3][7][8][5].
J. Jiang, X. Li, and G. Zhang [3] proposed an architec-

ture that approximates the rotation operation by dividing
the descriptor region into 17 subregions and using orienta-
tion histograms for each subregion. Although this method
relaxed the sequential dependency of the rotation process,
their design prioritized speed improvement, leading them
to set the number of scales in the Gaussian pyramid, the
Gaussian filter’s standard deviation σ, and the descriptor
region size to smaller values, which resulted in a signifi-
cant drop in matching accuracy. A Gaussian pyramid is
a multi-level set of images generated by stepwise smooth-
ing with Gaussian filters, where a larger σ represents a
coarser scale. Therefore, reducing the number of levels or

the value of σ narrows the range of scale representation,
and further shrinking the descriptor region decreases the
amount of information in the descriptor, together causing
accuracy degradation. In the present study, by repro-
ducing and comparing J. Jiang, X. Li, and G. Zhang’s
architecture under parameter settings that emphasize ac-
curacy, we confirmed that matching accuracy close to that
of conventional SIFT can be achieved. However, due to
the nature of the process in which pixel gradient informa-
tion is accumulated into orientation-specific histograms
for each subregion, the expansion of the descriptor region
under these settings makes high-speed processing diffi-
cult when employing their sequential histogram-addition
method.

B. Liu et al. [5] proposed an architecture that adopts a
polar-coordinate-based circular descriptor region, aiming
primarily at optimizing energy efficiency for high-frame-
rate scenarios. In their method, the circular descriptor
region is finely divided into fan-shaped segments, which
are then integrated and reordered according to the main
orientation to achieve rotation invariance. Furthermore,
they reduce the dimensionality of the output feature vec-
tor to improve energy efficiency, and they also confirmed
that matching accuracy is significantly improved com-
pared with the work of J. Jiang, X. Li, and G. Zhang.
However, according to their evaluation results, the match-
ing accuracy fluctuates considerably under certain condi-
tions such as scaling, suggesting that robustness of the fea-
tures remains an issue. Consequently, their method also
faces a similar challenge to that of Jiang et al., namely
that when parameter settings prioritize accuracy, high-
speed processing becomes difficult.

To overcome this challenge, we propose an architecture
that increases processing parallelism by dividing the de-
scriptor region into 36 small regions, thereby achieving
fast feature descriptor processing while maintaining accu-
racy. Each small region independently computes an orien-
tation histogram, and these histograms are then summed
and reordered to form the 17 subregion histograms, en-
abling processing with up to 36 parallel units while ap-
proximating the rotation operation. This allows for both
fast execution and high matching accuracy even under
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parameter settings that prioritize accuracy. Furthermore,
we provide a detailed RTL design of the feature descriptor
generator, which is significantly affected by the expansion
of the descriptor region within the proposed architecture,
and, through timing analysis using a logic synthesis tool,
quantitatively evaluate the acceleration effect of the pro-
posed architecture in a hardware implementation.
The rest of this paper is organized as follows. Section II

explains the algorithm of SIFT feature descriptor process-
ing, which forms the basis of the proposed architecture.
Section III describes the overall structure of the proposed
feature descriptor processing architecture and the paral-
lelization method by small-region division. Section IV
presents the detailed design of the feature descriptor gen-
erator. Section V reports the evaluation results in terms
of accuracy as well as speed, area, and power based on
logic synthesis. Finally, Section VI concludes this paper.

II. Algorithm of SIFT Feature Descriptor
Processing

SIFT feature descriptor processing mainly consists of
three steps: main orientation estimation, descriptor gen-
eration, and normalization. In this section, we explain
these three processes, which form the basis of the pro-
posed architecture.

A. Main Orientation Estimation

In the main orientation estimation, the gradient infor-
mation of the pixels around a keypoint is used to compute
an orientation histogram, as shown in Fig. 1. The hor-
izontal axis represents 36 bins obtained by dividing the
orientation into 10◦ intervals, and the vertical axis repre-
sents the sum of gradient magnitudes accumulated in each
bin. Here, “orientation histogram” denotes a histogram
of gradient orientations weighted by gradient magnitudes.
In this process, the local region around the keypoint is

first convolved with a Gaussian kernel, and then the gradi-
ent magnitude of each pixel is added to the corresponding
bin. The angle of the bin with the maximum value is de-
termined as the main orientation, and in the subsequent
processing steps, the descriptor region is rotated accord-
ing to this orientation to achieve rotation invariance.

B. Feature Descriptor Generation

Next, in the normalized coordinate system based on the
main orientation, the local region centered at the keypoint
is divided into multiple subregions. As shown in Fig. 2(a),
the local region is rotated according to the main orienta-
tion indicated by the arrow, and the rotated region is
divided into 4×4 subregions. As illustrated in the transi-
tion from Fig. 2(b) to Fig. 2(c), the gradient magnitudes
of pixels within each subregion are accumulated into the
corresponding orientation bins of the histogram. Each

Fig. 1. Example of an orientation histogram for main orientation
estimation.

Fig. 2. Computation of orientation histograms from the descriptor
region: (a) descriptor region rotated according to the main
orientation. (b) gradient information of pixels within the
descriptor region. (c) orientation histograms with 8 bins for each
subregion.

subregion has an orientation histogram with 8 bins. In
this process, the contribution of each pixel is weighted by
a Gaussian window centered at the keypoint so that pixels
closer to the center are given larger weights. Furthermore,
for both the subregion to which a pixel belongs and its
neighboring subregions, as well as the orientation bin and
its neighboring bins, linear interpolation is performed in
proportion to the distance and orientation difference. As
a result, since the 4×4 subregions each have 8 bin values,
a 128-dimensional feature vector is constructed. However,
the rotation operation based on the main orientation can
only be performed sequentially, which becomes an obsta-
cle to acceleration in hardware implementations. In the
next section, we propose a feature descriptor processing
architecture that resolves this issue.

C. Normalization

Finally, the obtained feature vector is normalized to
make it robust against illumination changes and outliers.
First, the L2 norm is computed using all elements, and
each component is divided by this norm to normalize the
entire feature vector. Next, to prevent abnormally large
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components from dominating the descriptor, each compo-
nent is clipped to 0.2 (after the first normalization), and
then L2 normalization is applied again.

Through the above processes, the SIFT algorithm de-
scribes features from the gradient information around a
keypoint.

III. Proposed Feature Descriptor Processing
Architecture

A. Overall Structure of the Proposed Architecture

The proposed architecture shown in Fig. 3 takes as
input the gradient information of the descriptor region
grad of size M × M and a valid signal indicating the
start of processing, and outputs the 136-dimensional fea-
ture vector feature vec. The squares in the figure
represent functional blocks, each of which operates se-
quentially, starting after the preceding block has com-
pleted. When valid is high, processing begins: us-
ing the input gradients, find keypoint orientation es-
timates the main orientation of the keypoint, and gen-
erate subregion histogram computes the orientation
histograms for the 17 subregions. Because these two pro-
cesses have no data dependency, they operate in parallel.

The resulting histograms are then reordered by bin
indices according to the main orientation via re-
ordering histogram, and the 16 subregion histograms
(excluding the center) are reordered via reorder-
ing subregion. This sequence of operations approxi-
mates the rotation operation.

Finally, histogram to vector applies L2 normaliza-
tion to the reordered histograms to generate feature vec.

In this study, we focus on the gener-
ate subregion histogram process and introduce
a method of subdividing the descriptor region into
smaller regions to increase parallelism. The details of
this small-region-based parallelization, used in gener-
ate subregion histogram, are described in the next
subsection.

B. Parallelization Method by Subregion Division

As shown in Fig. 4, the proposed architecture divides
the M ×M descriptor region in (a) into 36 small regions
in (b). Each small region has size ⌈M/6⌉ × ⌈M/6⌉, and
the shaded portions in the figure indicate areas where
multiple regions overlap. In the proposed architecture,
each small region independently computes an orientation
histogram, and by summing these histograms, the archi-
tecture constructs the orientation histograms for the 17
subregions. Specifically, by summing the eight-bin orien-
tation histogram values computed in small regions 1○, 2○,
7○, and 8○ in Fig. 4(b), we obtain the histogram corre-
sponding to subregion 7○ in Fig. 4(a). Because there are
no dependencies between small regions, processing can be

Fig. 3. Proposed Feature Descriptor Processing Architecture.

performed in up to 36 parallel units, yielding a substantial
acceleration.

In the next section, we describe in further detail the ar-
chitecture of the generate subregion histogram fea-
ture descriptor generator that incorporates the small-
region division.

IV. Detailed Design of the Feature
Descriptor Generator

A. Overall Structure of the Feature Descriptor Genera-
tor

Fig. 5 shows the architecture of the gener-
ate subregion histogram feature descriptor generator.
It receives as input the gradient information grad of the
M×M region around the keypoint and a valid signal, and
outputs 17 orientation histograms, each with 8 orientation
bins. First, the input grad is sliced by the WindowSlice
block into regions of size M/3 ×M/3. Next, each sliced
region is further divided, within the small-region com-
putation block calc small region, into four overlapping
small regions, and an orientation histogram is computed
for each small region. Here, both WindowSlice and
calc small region operate in nine-way parallel. The 36
small regions computed in nine-way parallel are then sent
to the subregion accumulation block SubregionAccu-
mulator.

The descriptor region is divided, as shown in Fig. 4(a),
into 17 subregions: one central region and 16 peripheral
regions that include overlap. In SubregionAccumula-
tor, for each subregion, the corresponding four small-
region histograms’ bin values are summed. This series
of operations yields the orientation histograms for the 17
subregions.
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Fig. 4. Small-region division of the descriptor region. (a) Division
of the M ×M descriptor region into 17 subregions. (b) Division
into 36 small regions.

Fig. 5. Architecture of the generate subregion histogram
block.

The following sections explain, in detail, the ar-
chitectures of the small-region computation block
calc small region and the subregion accumulation block
SubregionAccumulator.

B. Small-Region Computation Block

Fig. 6 shows the architecture of the small-region compu-
tation block calc small region. This architecture com-
prises three processing stages: a signal-selection stage, a
weighting stage, and a histogram-computation stage.
In the signal-selection stage, first, the input gradient

information grad for the M/3×M/3 region is divided—
still overlapping—into four small regions of size ⌈M/6⌉ ×
⌈M/6⌉ by four WindowSlice units. Next, each divided
data block is selected using a multiplexer (MUX) that
takes as its control signal the coordinates of the small
region. The small-region coordinate register Coord is
controlled by the valid signal that indicates the start
of processing, and the same coordinate values are used
for all four small regions. Also, because grad comprises
paired data of gradient magnitude and orientation, the
OriMagSplitter splits it into gradient magnitude data
mag and gradient orientation data ori.
In the weighting stage, the gradient magnitude mag is

Fig. 6. Architecture of the calc small region block.

first weighted with Gaussian weights, and then weighted
according to the distance between the gradient direction
and the center of each bin.
In the histogram-computation stage, the weighted val-

ues from the weighting stage are added, via the BinSe-
lector, to two active bins. Specifically, one bin receives
the weighted value directly, and the other bin receives the
weighted value subtracted from the pre-weighted value.
By doing so, we reduce the number of multiplications by
one. Through this sequence of operations, the orientation
histograms for the four small regions are computed.

C. Subregion Accumulation Block

SubregionAccumulator consists of 17 identical in-
stances of the block in Fig. 7, one per subregion. Fig. 7
illustrates the architecture that computes the orienta-
tion histogram of a subregion from four small regions.
Each instance first receives as input the four small-region
histograms hist corresponding to its target subregion.
Within Bin0 Slice through Bin7 Slice, it extracts the
bin values from those four histograms.
Next, it sums the values of the same bin across the

four histograms for each of the eight orientations, and
outputs the result as subregion histogram. With 17
such instances in SubregionAccumulator, this process
runs in 17-way parallel, thereby computing the orientation
histograms for all 17 subregions simultaneously.

V. Evaluation

In this section, we evaluate the accuracy of the proposed
architecture, as well as the cycle count, cell area, and

- 196 -



Fig. 7. Computation of a subregion orientation histogram from
four small regions.

power consumption of the feature descriptor generator
that incorporates small-region division. For the accuracy
evaluation, we implemented both the conventional SIFT
algorithm and the proposed architecture using floating-
point arithmetic and compared their performance. There-
fore, before presenting the matching accuracy results, we
first describe the SIFT algorithm used for accuracy eval-
uation.

A. SIFT Algorithm Used for Accuracy Evaluation

SIFT feature extraction consists of two main pro-
cesses: keypoint detection and feature descriptor genera-
tion. Among these, the keypoint detection algorithm and
parameters were kept identical for both the baseline and
the proposed architecture. In this study, to achieve stable
and high-precision matching, we adopted the parameters
reported by Lowe [1] that yield high matching accuracy:
the number of octaves was set to 3, the number of scales
to 6, the initial standard deviation to σ0 = 1.6, and the
increment factor to k = 21/3. The σ values for each scale
are {σ0, kσ0, k

2σ0, k
3σ0, k

4σ0, k
5σ0}, and keypoints are

detected at scales 1, 2, and 3 during Gaussian/DoG pyra-
mid generation and extrema detection. In the Gaussian
pyramid, the blurring range was set to ±2.5σ. For lo-
calization in extrema detection, the threshold was set to
0.015 to eliminate low-contrast keypoints with small DoG
values, and the eigenvalue ratio r of the Hessian matrix
was set to 10 to suppress edge responses. Note that sub-
pixel position estimation was not included in this study.
For the feature descriptor generation process of the

baseline SIFT used for comparison, we employed the same
algorithm as described in Section II. Following the work
of I. Rey-Otero and M. Delbracio [6], the Gaussian ker-
nel window size was set to 6σ, and the side length of the
descriptor region was set to 1.25 × 6σ. In our proposed
architecture, for computational convenience while keep-
ing the descriptor region size close to that of conventional
SIFT, the side length was set to {27, 39, 51} at scales 1,
2, and 3, respectively, which are multiples of 3 and odd
numbers.

B. Matching Accuracy Evaluation

Fig. 8 shows a comparison of accuracy for each method.
The top of the figure indicates the type of image and the
applied transformation. The horizontal axis represents
the strength of the transformation, and the vertical axis
represents the matching accuracy between the original im-
age (1) and the transformed image. In the bottom por-
tion of the figure, “Original” denotes an implementation
of conventional SIFT using the parameters adopted in this
work, and “Proposed” denotes an implementation of the
feature descriptor processing proposed in this study. In
this evaluation, both methods were implemented in pro-
grams using 32-bit floating-point arithmetic, and features
were extracted for assessment.
Feature similarity was computed using Euclidean dis-

tance, and correspondences were established using a
threshold k = 0.8. Matching accuracy was measured on
the Mikolajczyk dataset [4]. From Fig. 8, it can be con-
firmed that the accuracy of the Proposed method is sig-
nificantly improved compared to the results reported by
J. Jiang, X. Li, and G. Zhang. Moreover, although there
is a tendency for the Proposed method’s accuracy to drop
sharply when the Original method’s accuracy approaches
80%, overall the Proposed method achieves accuracy close
to that of the Original.
As another example of rotation-approximation meth-

ods, the evaluation results reported by B. Liu et al. [5]
for their polar-coordinate-based approach show significant
fluctuations in matching accuracy under zoom + rota-
tion and viewpoint change transformations. In contrast,
our Proposed method maintains stable accuracy under the
same transformations, demonstrating superior robustness
in preserving rotation and scale invariance.

C. Logic Synthesis Evaluation of the Feature Descriptor
Generator

Table I shows the results of logic synthesis for both
the RTL of the proposed feature descriptor generator
and the RTL reproducing the module corresponding to
the feature descriptor generator of J. Jiang, X. Li, and
G. Zhang’s method [3], using the FreePDK45 (an open-
source 45 nm process technology) and Synopsys Design
Vision W-2024.09 with a target clock of 200 MHz.
In the reproduced implementation, processing an M ×

M region (M = 27, 39, 51) requires {732, 1524, 2604} cy-
cles. In contrast, in our architecture, the computation and
integration of the 36 small regions complete in {26, 50, 82}
cycles, respectively. Therefore, the proposed method op-
erates {28.2, 30.5, 31.8} times faster than the reproduced
method for each value of M . On the other hand, the
cell area is approximately three times larger for each M ,
and the power consumption is nearly five times greater.
These increases are believed to result from the larger total
number of histograms and the increased number of addi-
tions and multiplications, as well as from non-optimized
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Fig. 8. Accuracy comparison of each method.

bit-width settings.

VI. Conclusion

In this study, to address the sequential nature of the ro-
tation operation, which constitutes a bottleneck in SIFT
feature descriptor processing, we proposed an architecture
that divides the descriptor region into 36 small regions,
independently computes orientation histograms in each
small region, and then assembles the histograms of the
17 subregions. This structure enables processing in up to
36 parallel units and, even under parameter settings that
prioritize accuracy, achieves both rapid processing and
high matching accuracy. We performed a detailed RTL

TABLE I
Comparison of feature descriptor generators.

Method M Power (mW) Total Cell Area (µm2)

Reproduced [3]
27 18.33 133,307
39 18.51 174,733
51 18.27 227,912

Proposed
27 91.00 435,707
39 79.88 492,989
51 110.04 703,021

design of the feature descriptor generator, which is the
core of the proposed method, and conducted logic synthe-
sis using the FreePDK45, achieving a maximum speedup
of 31.8×. Meanwhile, cell area increased by roughly 3×
and power consumption by about 5×; these increases are
primarily attributed to the larger number of histograms,
the increase in arithmetic units, and insufficient bit-width
optimization. Going forward, in addition to RTL imple-
mentation of the entire architecture, we will pursue fur-
ther improvements in area efficiency and high throughput
through bit-width optimization, memory resource reuse
techniques, and arithmetic scheduling optimization.
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