R3-8

SASIMI 2025 Proceedings

Numberlink Problem Variants Modeled after FPGA Routing Fabrics
and their Solvers that Enumerate all the Solutions

Ryohei Komi

Hiroyuki Ochi

Graduate School of Information Science and Engineering
Ritsumeikan University
Ibaraki, Osaka 567-8570, Japan
{is0559xe@ed,ochi@cs}.ritsumei.ac.jp

Abstract— In this study, we define numberlink
problem variants that mimic the routing fabrics of
FPGASs, and develop solvers that enumerate all their
solutions. The target FPGA architectures are early
SRAM-based FPGAs and via-switch FPGAs. The ex-
isting method, which uses a top-down ZDD construc-
tion method (TdZdd), efficiently enumerates all solu-
tions to the numberlink problem; however, it is spe-
cialized for planar grid-based routing problems. In
this study, we extend the algorithm to multi-layer
problems, targeting actual FPGAs where horizontal
and vertical segments may overlap without intersec-
tions.

I. INTRODUCTION

Numberlink[1] is a logic puzzle that can be considered
a model of the planar (single-layer) grid-based routing
problem. Especially, numberlink problem has something
in common with FPGA routing: a path must be com-
pleted using a combination of predefined wire segments.

A general routing algorithm can be used to find a so-
lution to the numberlink problem[2]. On the other hand,
a solver has also been proposed to find all solutions to
numberlinks[3]. This solver uses a top-down/breadth-first
decision diagram manipulation framework, TdZdd[4], to
construct a ZDD that represents all solutions to the prob-
lem in a reasonable amount of time. Li et al. defined a
multi-terminal numberlink problem that is more similar
to the routing of actual integrated circuits. They pro-
posed an algorithm using a top-down ZDD construction
method to enumerate all solutions[5].

If we relate the numberlink problem to the routing
problem of integrated circuits, we can say the following.

e When no solution exists, routing resources or flexi-
bility are insufficient for the problem.

e When only a limited number of solutions exist, rout-
ing resources and flexibility are sufficient, but there
is little margin.

o When there are many solutions, the routing resources
and flexibility are excessive.

For this reason, the number of solutions (or routing al-
ternatives) of numberlink is expected to be used to assess
the routing resources and flexibility[5].

In this study, we define numberlink problem variants
that mimic the routing fabrics of FPGAs, and develop
solvers that enumerate all their solutions. The target
FPGA architectures are early SRAM-based FPGAs and
via-switch FPGAs. The proposed solver is an extension of
the conventional solver [3] that is specialized for the orig-
inal numberlink, a planar grid-based routing problem.

This paper is organized as follows. Section II provides
an overview of a solver that uses TdZdd to enumerate all
solutions to the numberlink problem, and describes the
FPGA architecture we are targeting. Sections IIT and
IV describe numberlink problems extended to via-switch
FPGAs and early SRAM-based FPGAs, respectively, and
propose dedicated solvers for them. In Section V, we
present the experimental results. Finally, Section VI con-
cludes our work and presents future challenges.

II. PRELIMINARIES
A. Numberlink problem

Numberlink is a logic puzzle[l]. A problem instance
consists of an m X n rectangle array of cells and one or
more pair(s) of numbers (or labels) placed disjointly on
the cells in the array. The solver must connect each pair
of numbers with a continuous line. Each line (or path)
consists of vertical or horizontal edges connecting the cen-
ters of cells. Paths for different pairs of numbers must not
overlap or cross each other. Figure 1(a) shows an example
problem of numberlink, and Fig. 1(b) shows the solutions.

Solutions #1 and #2 in Fig. 1(b) have very different
routes and are considered representative solutions to this
problem. On the other hand, solutions #3 to #5 are simi-
lar solutions that add a redundant U-shaped detour to the
margin of solution #2. Ref. [3] also proposes a method to
exclude U-shaped patterns from the numberlink solution.

- 199 -

a]
N

| W—— P
8~ =i

g
S
4

lution #2
m]
2
1

1

2 2

LS ==

ki s i |

=
|
|
2

o
2
1
=

»-\
L ——

2 AL)
solution #3 solution #4 solution #5

— selected
==» deselected

(a) 4 x 3 problem. (b) All solutions.

Fig. 1. Problem instance of Fig. 2. ZDD representing
numberlink and its solutions. {{a,b}.{a,c},{b,c}}[3].

B. ZDD (Zero-suppressed Binary Decision Diagram)

A zero-suppressed binary decision diagram (ZDD) rep-
resents a set of combinations of elements[6]. A ZDD is a
directed acyclic graph, as exemplified in Fig.2, which con-
sists of a O-terminal node and a 1-terminal node (squares),
non-terminal nodes (circles), 1-arcs (solid arrows), and 0-
arcs (dashed arrows). Each non-terminal node is labeled
by an element and has one outgoing 1-arc and one outgo-
ing O-arc. There is only one node with no incoming edge,
called the root node. Non-terminal nodes are ordered so
that elements appear in a specific order along the paths
from the root node to the terminal nodes. The 1-arc rep-
resents that the element of the source node is “selected,”
and a path from the root node to the 1-terminal node
represents a combination of selected elements.

For example, the set of combinations of selecting two
elements from {a,b,c} is {{a,b},{a,c},{b,c}}. This can be
represented in ZDD as shown in Fig. 2.

ZDD excels at enumerating all solutions to combina-
torial problems and can also efficiently narrow down the
solutions by applying additional constraints.

C. Top-down ZDD Construction Method

Set operations, including union and intersection, can
be performed efficiently on ZDDs, and a ZDD represent-
ing the desired set of combinations can be constructed by
repeating basic operations on ZDDs. However, such a
bottom-up ZDD construction method often runs out of
memory space in the middle of computation since inter-
mediate ZDD can be extremely large even when the final
ZDD is compact.

The top-down ZDD construction method[3] constructs
the ZDD for a target set of combinations directly from
scratch. It first generates a root node, then its two chil-
dren, and so forth in a breadth-first manner, level-by-
level, from the root node to the terminal nodes. To al-
low breadth-first construction, each non-terminal node is
given additional space for its computation state in addi-
tion to basic attributes of a ZDD node, such as level. Note
that if two non-terminal nodes have the same level and
computation state, these nodes can be uniquified since
they will produce the same subgraphs. Edges that can-
not reach a 1-terminal node are immediately pruned, i.e.,
connected to a O-terminal node.

The top-down ZDD construction method has success-
fully generated ZDDs faster and reduced the memory us-

age compared to conventional bottom-up ZDD construc-
tion methods. The top-down ZDD construction method
effectively solves combinatorial problems, especially when
finding all the solutions. In the rest of this paper, we
implement the algorithm using the C++ library TdZdd,
which provides various functions for constructing and
processing ZDDs using the top-down ZDD construction
method. When using TdZdd, if we design a data struc-
ture for mate[] to hold the calculation state and define
functions getRoot() and getChild() to generate the root
and child node, respectively, we can construct a ZDD ac-
cording to the top-down ZDD construction method.

D. Conventional TdZdd-based Numberlink Solver

Here we provide an overview of the conventional num-
berlink solver[3] using TdZdd. This algorithm has three
main features.

Elements of combination that represent the solu-
tion A solution to a numberlink problem can be repre-
sented as a combination of edges that form paths. More
notably, it is sufficient to use only the horizontal edges,
not all the vertical and horizontal edges[3]. As a result,
the number of elements of combination, that is, the num-
ber of ZDD variables, can be reduced to m(n — 1).

Number of elements of state variable mate]]
When the cells are searched from top to bottom row and
left to right within a row, the boundary (frontier) between
the unexplored and explored cells spans only one row on
the board. As a result, the state variable mate]] in each
ZDD node needs to hold information for only n cells.

Compact encoding of mate[] mate[j](0 < j < m)
compactly represents the connection state of the jth col-
umn of the frontier row in one byte.

J Unlabelled and unconnected
7 An open end of a path to column j’
mate[j] =< n Additional edge is not allowed

n +q Labelled ¢ but unconnected, or an

open end of a path labelled ¢

When searching the cell in the jth column, deciding
whether to accept the right and bottom edges is neces-
sary. During the process, it is necessary to prohibit (1)
selecting too few edge (dead end), (2) selecting too many
edges (branch), (3) connecting cells with paths to differ-
ent labels (short circuit), and (4) reconnecting cells that
have been connected (cycle). mate[] can provide enough
information to make the right choice.

E. SRAM-based FPGA

SRAM-based FPGAs use SRAM for configuration
memory, and are currently the mainstream FPGA[7]. As

-200 -

TO T1 T2 T3
13 ‘ %3
2 ¢4R2
L17¢ R1
LO# RO
BO B1 B2 B3 BO

(c) PIP.

(a) Top level architecture. (b) Disjoint-type SB.

Fig. 3. Routing architecture of island style SRAM FPGA[7][8].

TO 71 T2 T3

3

ST
LTI
A A
O

w

N

0 XD XD D
=Y

o

BO B1 B2 B3

(a) Top level architecture. (b) XB.

Fig. 4. Routing architecture of via-switch FPGA[9].

shown in Fig. 3(a), the internal structure is typically an
island style. IOB (input output block) interfaces with ex-
ternal devices. LB (logic block) performs operations. CB
(connection block) bridges the LB’s inputs/outputs and
the wire segments. SB (switch block) connects the verti-
cal and horizontal wire segments to form routing paths.

In the early SRAM-based FPGAs, the switches inside
the SB were implemented using pass transistors. Figure
3(b) shows the disjoint type, one of the SB architectures
adopted in Xilinx’s XC4000 series FPGAs[8]. The dia-
mond shapes at the intersections of the vertical and hor-
izontal wire segments are PIPs (programmable intercon-
nection points) that determine the routing path. The PIP
comprised six pass transistors as shown in Figure 3(c).

F. Via-switch FPGA

Via-switch FPGAs[9] store configuration information
in via switches. A via-switch is a non-volatile resistive-
change switch element that can be programmed to ON
or OFF. The overall FPGA architecture is similar to that
of an island-style FPGA, as shown in Fig. 4(a), but XBs
(crossbar blocks) are used instead of CBs and SBs. The
XB is an array of via-switches, as shown in Fig. 4(b), and
allows programming of the connections between vertical
and horizontal wire segments. The XB has a very small
footprint and can be implemented in the metal layer of an
integrated circuit, so a via-switch FPGA with the same
functionality as an SRAM-based FPGA has been realized
with an area of only 8.3%[10]. As shown in Fig. 4(b), in
addition to the switch array (blue) in the crossbar, there
are switches (red) for programming the connections be-
tween the wire segments of adjacent XBs.

O Node corresponding to

an |0B, where a number
(or label) can be placed

—— Node corresponding to
a wire segment inside
a crossbar array

Via-switch inside a
crossbar array

[Via-switch between
crossbar arrays

Fig. 5. Simplified model of via-switch FPGAs (m = n = 4,
Mxb = Nxb = 2)

III. NUMBERLINK PROBLEM MODELED AFTER
Via-swiTcH FPGA

In this section, we propose an algorithm based on the
top-down ZDD construction method to enumerate all so-
lutions to the numberlink problem for a “board” of sim-
plified via-switch FPGA by extending the existing one for
a general numberlink problem.

A. Simplified model of via-switch FPGAs

When designing a solver for a numberlink problem for
a “board” of via-switch FPGA, it is first necessary to
model the FPGA. In this paper, we focus on examining
the feasibility of the algorithm, so we adopt a model that
is as simple as possible. In via-switch FPGAs, blocks that
determine the routing paths are XBs. This paper mod-
els the via-switch FPGA as an array of only IOBs and
XBs, as shown in Fig. 5. We also assume that the labels
for the numberlink problem can only be placed on the
IOBs. In Fig. 5, the red circles are nodes that represent
IOBs, the lines are nodes that represent wire segments in-
side the crossbar, the blue circles represent via-switches in
the crossbar, and the red rectangles represent via-switches
that connect wire segments of adjacent crossbars.

B. Designing state variables for constructing ZDDs

In the following, we design a data structure to solve the
above numberlink problem as a combinatorial problem
with all via-switches as elements. The total number of
via switches is mn + mypn + mny,, where m and n are
the total number of rows and columns, respectively, in the
all crossbars, my;, and ny, are the number of XBs in the
vertical and horizontal direction, respectively. Therefore,
to enumerate all solutions to this problem using ZDD, we
decided to use mn + mypn + mny, ZDD variables. Our
solver makes the binary decision (on or off) of via-switches
one by one in the order from the upper rows (and from
the left columns if in the same row).

In the algorithm for a general numberlink problem in
[3], the state of one row to be searched is stored in the
state variable mate[], whose number of elements is n,
where n is the number of columns. In the proposed al-
gorithm for via-switch FPGA, the state of one row to be
searched is stored in the state variable mate[], whose num-
ber of elements is n+ 1. This is the sum of n, the number

-201 -

Fig. 6. Solutions to a sample problem with two solutions
(mzﬂ:g’ mxb:nxb:3).

of vertical wire segments that cross the current row, and
1, the number of horizontal wire segment that cross the
current cell. The value stored in mate[j] is almost the
same as in the algorithm of [3].

Now the algorithm was able to be implemented using
TdZdd package without any problems. Figure 6 shows
the solutions to a sample problem with two solutions.

IV. NUMBERLINK PROBLEM MODELED AFTER
SRAM-BASED FPGAS

Following the previous section, targeted at a simplified
SRAM-based FPGA “board”, we propose an algorithm
to enumerate all solutions of the numberlink problem.

A. Simplified model of SRAM-based FPGAs

First, we introduce a simplified model of SRAM-based
FPGAs. Among various blocks in SRAM-based FPGAs,
the SB is the most essential block that determines the
routing path. In this paper, we model the routing struc-
ture of an SRAM-based FPGA as an array of SBs only.
To simplify the experiments, we assume that the number
of tracks in the vertical and horizontal directions in the
SBs is one. We model the SB configuration as a disjoint
type. That is, each SB consists of only one PIP with
six pass transistors. We also assume that the labels for
the numberlink problem can only be placed on IOBs. By
modeling an SRAM-based FPGA under these conditions,
it looks like Fig. 7. In Fig. 7, the red circles are nodes
that represent IOBs, the white circles are nodes that rep-
resent wire segments connecting adjacent PIPs, and the
lines represent pass transistors that make up the PIPs. In
an actual SRAM-based FPGA, there are wire segments
between SBs (PIPs), but these are omitted in Fig. 7.

B. Designing state variables for constructing ZDDs

The above numberlink problem can be considered as a
combination problem of 6mn pass transistors, where the
array size is m x n. To enumerate all the solutions to
this problem using ZDD, we decided to use 6mn ZDD
variables, each of which corresponds to a pass transistor.
Our solver makes the binary decision (on or off) of pass
transistors one by one in the order from the upper rows

O Node corresponding to

an 10B, where a number
(or label) can be placed

O Node corresponding to

a wire segment between
adjacent SBs

—— Pass transistor in a PIP

Fig. 7. Simplified model of early SRAM-based FPGAs
(m=n=3)

(and from the left columns if in the same row, and from
the number 0 transistor in Fig. 7 if in the same PIP).

In the algorithm for a general numberlink problem in
[3], the state of one row to be searched is stored in the
state variable mate[], whose number of elements is n, the
number of PIPs in one row. In our algorithm for SRAM-
based FPGAs, the state of one row to be searched is also
stored in the state variable mate]], but its number of el-
ements is 7n + 2. It consists of three parts: (1) intra-
row connectivity (3n + 1 elements), (2) label information
(3n 4+ 1 elements), and (3) connectivity through rows
above (n elements).

The connection information tracks the node number of
the other end of a path within the same row. It is ini-
tialized with the node number of the node itself when the
processing of the first node in a new row begins, as shown
in Fig. 8(a). After that, each time a pass transistor is
selected, the nodes at both ends of the path exchange
numbers (Fig. 8(b)).

The label information is attached to a node when it is
connected to another node with a label (a number given
in the problem). The label information is initialized with
that from the input file, as shown in Fig. 8(c), when the
processing of the first node in a new row begins. After
that, each time a pass transistor is selected, information is
copied from the node with label information to the node
without label information (Fig. 8(d)). When processing
of a row is finished, the label information of the nodes at
the boundary with the next row ([3] to [5] in Fig. 8(d)) is
inherited by the corresponding nodes in the next row ([0]
to [2] in Fig. 8(d)).

The connectivity through rows above indicates the pres-
ence of a connection to a node in the row above, or a
connection via the row above, for the n nodes on the
boundary with the row above. When processing of the
top row of the “board” begins, there is no row above, so
it is initialized to 0 (Fig, 8(e)). When processing of a row
is finished, if the node on the boundary with the next row
is an open end of a path, a unique number is assigned to
each path and inherited by the next row (Fig.8(f)).

C. Constraints for state variables

When constructing a ZDD, combinations that violate
the PIP constraints of the SRAM-based FPGA or the

-202 -

[310 " O [510
[index/i0] (L12]3]4](15 6] (7o)

value 0 1 2 3 456 7 89

(a) Intra-row connectivity

— Initial state for the row.

OO o)

6l

[.;1'()‘ te) ’ ol

[indexli0]11][12)3) 4] [5]][6][7][8][S]}

value1 2 00001000
(c) Label information

— Initial state for the row.

[4]"(:)':
[indexlio]li1]2]]i3][4]s]li6]l7]l[8][(9]

value 3 5204167 *9
(b) Intra-row connectivity
— Final state for the row.

HlolZe])

lindexliol[1[21[31(4](5]](6][(7]8][o]}
value 1 2 0002 1020
(d) Label information

— Final state for the row.

[01@ [1]O [21Q [3]O

lindex|[0)[1[12][3]

value 0 0 0 0

value 1 2 2 0

(e) Connectivity thru rows above (f) Connectivity thru rows above

— Initial state for the row. — Initial state for the next row.

Fig. 8. State variable mate[| for early SRAM-based FPGAs.

(a) Legal pattern for path A-B. (b) Illegal pattern for path A-B.

Fig. 9. PIP constraints.

numberlink constraints must be pruned.

The PIP constraint is that selecting multiple pass tran-
sistors connected to one node of the same PIP is illegal.
For example, Fig. 9(a) is a legal pattern that connects
nodes A and B of a PIP, while Fig. 9(b) is illegal.

The constraints of numberlink are as follows: (1) Nodes
with different labels are not mutually connected. (2)
There is no route that does not reach label. (3) There
is no node with label that does not have connection. (4)
No route forms a cycle.

Violation of (1) can be avoided if a pass transistor be-
tween nodes with different label information is deselected.
Violations of (2) and (3) can be pruned by detecting the
open end of a path that does not reach a labelled node
or the boundary node to the row below. Violation of (4)
can be avoided if a pass transistor is deselected between
nodes with connectivity through rows above.

The set of combinations that satisfy both constraints
forms the solution set of the numberlink problem modeled
after the SRAM-based FPGA. Figure 10 shows all solu-
tions for an example problem satisfying both constraints.

V. EXPERIMENTAL RESULTS

This section presents experimental results of the solvers
proposed in Sections IIT and IV.

The programs for the proposed solvers were described
in C++ using the C++ library TdZdd 1.1[4], and com-

-l',:l-ww:f-, £ EAEA D EAA
\'\'\I'\‘, \I*\z\/\l' ’ \I¢\¢ e NI
BaE P 4,

B B B >
N e (e ' steste L S el Tan e PN
—\:s: R D el g B AR e R D b L e A d BIad had s

22 & 4 & 2
s:s¢s¢s¢s¢ N B e ety B D S e et
A d biaird R an el S LS4 A a R R an ST] A4 A d A A A A

Sre st ST ST ST SRR ST

+

Fig. 10. Solutions to a sample problem with three solutions
(m =mn=25).

()Q3

Fig. 11. Test problems for solver for via-switch FPGAs.

A VA NV N\ P NN\ N N NN N

QRICH A K KX

QRICH I K Kx X g

QKA A KXH KK /

QRICH I KA

NN NN N 7
(a) No depopulation (b) Diagonal only (c) Mixed

Fig. 12. SRAM-based FPGA model with depopulated transistors.

piled using gcc-9.4.0 with option -03’. The CPU
used in the experiments was an Intel(R) Xeon(R) Gold
6140 CPU@2.30GHz, with 128GB of main memory, and
Ubuntu 20.04.6 as the OS.

A. Results for the solver for SRAM-based FPGAs

The “board” size (m x n) for the numberlink problem
was set to 5 x5 or 6 x 6. The number of labels was set to 6
pairs, and problems were generated by randomly placing
them on the IOB nodes (Fig. 7). By generating problems
randomly and discarding solutionless (unroutable) prob-
lems, we prepared 100 problems for each “board” size.

The experimental results are shown in Table I. The
experimental results show that while the number of so-
lutions increases by approximately 1200 times from a
“board” size of 5 x 5 to 6 x 6, the increases in CPU time
and memory usage are kept to about 100 times.

As a use case of the proposed method for architecture
exploration, we investigate the change in the number of
solutions when pass transistors are depopulated. Fig-
ures 12(b) and (c) both show PIP arrays with 18 pass
transistors removed from Fig. 12(a). Table II shows the
results of applying the same 100 problems as in the pre-
vious experiment to these. These results show that even
when removing the same number of transistors, it is bet-
ter to leave ones in the orthogonal directions. This can be
considered a reaffirmation of the usefulness of long wires
in the orthogonal directions (e.g., double-length wire).

-203 -

TABLE 1
RESULT OF SOLVER FOR SRAM-BASED FPGAS.

“board” #solution minimum total wire length CPU time (s) memory space (MB)
size avg. min. max. | avg. min. max. avg. min. max. avg. min. max.
5x5 47929 43 1197493 | 20.9 8 35 0.34 0.01 2.22 38.8 5 243
6 x 6 7.91E7 379 2.08E9 | 29.5 15 43 | 42.08 2.09 201.23 | 3557.5 166 22240
60
TABLE II 50
RESULTS FOR THE TRANSISTOR DEPOPULATION.
1 lati routable avg. avg. minimum 40
depopulation problems #solution total wire length Z 30
(a) No depopulation 100 47929 26.85 =
(b) Diagonal only 99 1264 28.16 20
(c) Mixed 66 978 28.85 10
0
1.E+00 1.E+02 1.E+04 1.E+06
TABLE III #sol
MEMORY USAGE OF THE TEST PROBLEMS FOR VIA-SWITCH FPGAS.
Quiz 6 X 6 9 X9 12 X 12 15 X 15
% 443 1§3 - - Fig. 13. Correlation between #sol and #sw
3 5 880 — —
4 4 8 6778 —
5 4 4 4 4))
6 22 the number of solutions to these numberlink problems and
examined their applicability. There is still room for im-
TABLE TV provement in the selection of ZDD variables, the mate|]

IMPACT OF XB GRANURARITY IN VIA-SWITCH FPGAS.

min. mxp, Nxb FPprob Mxb, Nxb

with sol. 1x1 2x2 3x3 6 X 6

IxT aT7 avg. #sol 42.6 1215.4 10756.7 229753.6
min. #sw 9.3 13.5 17.7 29.8

2 X2 1455 avg. #sol — 975.5 9948.5 241239.1]
min. #sw — 15.7 19.2 30.9

3 X3 65 avg. #sol — — 4378.6 123249.0
min. #sw 22.2 34.3

6 X6 3 avg. #sol — — — 20007.0
min. #sw 40.7

B. Results for the solver for via-switch FPGAs

As a test problem for numberlink for via-switch FP-
GAs, we used six problem patterns shown in Fig. 11. In
these problems, n labels are placed in order on each of the
two edges of a ‘board’ of size n x n, and there is only one
solution for each. Table III presents the relationship be-
tween the required memory capacity and the board sizes,
ranging from 6 x 6 to 15 x 15. Due to the influence of the
search order (variable order of the ZDD), we can see that
the ZDD becomes more compact when there are more
labels on the top edge.

We generated 2000 problems in which four pairs of la-
bels were randomly arranged on a ‘board’ with m =n =
6. We investigated how the number of solutions (#sol)
and the minimum number of switches (#sw) were affected
when myy, = ny, =1, 2, 3, and 6. The results are shown in
Table IV. Larger myyp, nyp, offer a larger number of prob-
lems with solutions and a larger number of alternative
solutions, but require a larger number of switches. Inter-
estingly, we also found a strong correlation between the
number of solutions and the minimum number of switches
(Fig. 13, for my, = nyp = 6).

VI. CONCLUSION

In this paper, we modeled the routing architectures of
via-switch FPGAs and early SRAM-based FPGAs as the
numberlink problem. We developed a solver to determine

data structure, and the ZDD construction algorithm used
in this paper. It is believed that this approach will apply
to larger architecture in the future. The number of solu-
tions to the numberlink problem is expected to be utilized
as a new metric to evaluate the amount of resources and
flexibility of a routing architecture.

REFERENCES

[1] Nikoli, “Nikoli official page”. http://www.nikoli.co.jp/
[2] K. Kawamura, T. Shindo, T. Shibuya, H. Miwatari, and

Y. Ohki, “Touch and cross router,” ICCAD’90, pp.56—59,
1990.

[3] T. Toda, T. Saitoh, H. Iwashita, J. Kawahara,
and S. Minato, “ZDDs and enumeration problems:

state-of-the-art techniques and programming tool,”
Computer Software, vol.34, no.3, pp.3_97-3_120, 2017. in

Japanese.
[4] H. Iwashita, “Tdzdd 1.1, a top-down/breadth-first
decision diagram manipulation framework”.

https://github.com/kunisura/TdZdd

[6] X. Li, T. Imagawa, and H. Ochi, “Finding all solutions
of multi-terminal numberlink problem utilizing top-down
ZDD construction,” ASICON 2023, pp.1-4, Oct. 2023.

[6] S. Minato, “Zero-Suppressed BDDs for Set Manipulation
in Combinatorial Problems,” DAC’93, pp.272-277, 1993.

[7] A.Boutros and V.Betz, “FPGA Architecture: Principles
and Progression,” IEEE Circuits and Systems Magazine,
vol.21, no.2, pp.4-29, 2021.

[8] H.-C. Hsieh, W.S. Carter, J. Ja, et al,
“Third-generation architecture boosts speed and
density of field-programmable gate arrays,” CICC’90,
pp-31.2/1-31.2/7, 1990.

[9] H. Ochi, K. Yamaguchi, T. Fujimoto, et al., “Via-switch
FPGA: Highly dense mixed-grained reconfigurable
architecture with overlay via-switch crossbars,” IEEE
T-VLSI, vol.26, no.12, pp.2723-2736, 2018.

[10] M. Hashimoto, X. Bai, N. Banno, et al., “Via-switch
FPGA with transistor-free programmability enabling

energy-efficient near-memory parallel computation,” Jpn.
J. Appl. Phys., vol.61, no.SM0804, pp.1-7, 2022.

-204 -

