
Implementation and Evaluation of a Speculative Execution-Based
FPGA Accelerator for Electronic Circuit Simulation Using

Gauss–Jordan and BiCGSTAB Methods

Yuma Omoto Atsushi Kubota Tetsuo Hironaka

Department of Computer and Network Engineering
Graduate School of Information Sciences, Hiroshima City University

3-4-1 Ozuka-Higashi, Asaminami-ku, Hiroshima City, Hiroshima 731-3194, Japan
mk66007@e.hiroshima-cu.ac.jp kubota@hiroshima-cu.ac.jp hironaka@hiroshima-cu.ac.jp

This paper proposes a speculative execution sys-

tem on FPGA to accelerate circuit simulation by

combining Gauss–Jordan Elimination (GJE) and the

BiCGSTAB method. Both solvers run in parallel, and

the first to converge is adopted to reduce latency. Ex-

periments on 20×20, 40×40, 80×80, and 160×160 ma-

trices measured latency and resource use to evaluate

scalability. A prototype on a Xilinx ZCU104 FPGA

was further tested with a 20×20 circuit. Results

show that GJE is effective for small problems, while

BiCGSTAB achieves higher efficiency for larger di-

mensions and certain conditions, confirming the ben-

efit of the proposed speculative execution approach.

I. Introduction

Hardware-in-the-Loop (HIL) simulation is increasingly
used in automotive and aerospace industries for early-
stage verification by integrating real hardware with sim-
ulation. Efficient HIL requires fast, continuous circuit
simulation, but conventional CPU-based and GPU-based
methods are constrained by linear solver costs and I/O
latency. FPGA acceleration, with high parallelism and
rich I/O, offers a promising alternative[1][2]. This study
implements a SPICE[3]-based circuit simulator on FPGA
to provide a high-performance HIL platform for machine
control electronics.
However, implementing direct solvers such as Gauss–

Jordan Elimination (GJE) on FPGAs is constrained by
resource usage and latency. As matrix size grows, the
resource demand of GJE escalates, limiting scalability.
In contrast, the BiCGSTAB iterative solver, though not
always ensuring convergence, offers better efficiency and
scalability. This study proposes speculative parallel exe-
cution of BiCGSTAB with GJE to reduce latency.
The remainder of this paper is organized as follows.

Section II introduces the simulator and solvers, Section III
describes the implementation and optimization, Section
IV presents the evaluation, Section V discusses the results,
and Section VI concludes the paper with future directions.

II. System Architecture

A. Overview of the Electronic Circuit Simulator

To accelerate the electronic circuit simulator using
FPGA, this study adopts a speculative execution system
that runs multiple solvers concurrently in order to reduce
simulation time. Toward this goal, we have designed the
system architecture illustrated in Figure1.

Processing System (PS) Section: The PS, equipped
with an onboard ARM CPU, receives a SPICE
netlist, parses it to extract component parameters
and connectivity, and stores this data in DRAM for
use by the Programmable Logic (PL) section.

Programmable Logic (PL) Section: At startup, the
control unit transfers circuit data from DRAM to on-
chip shared memory (BRAM). Simulation proceeds
in three steps:

1. Linear Equation Construction: Generates
linear equations from the input data. Multiple
32-bit input channels (#1, #2, ..., #N) are pre-
pared for external inputs.

2. Solver Execution: Dedicated solver units
solve the equations in parallel.

3. Output: The resulting branch voltages are out-
put via multiple channels (#1, #2, ..., #N) to
external systems.

Data exchange between processing units is performed
over a 64-bit data bus.

B. Proposed Speculative Execution System

Solving linear equations dominates computational time
in electronic circuit simulation, making its acceleration
essential. The direct Gauss–Jordan Elimination (GJE)
method has O(n3) complexity, which is feasible for small
matrices but becomes costly as size increases. In contrast,
the iterative BiCGSTAB method operates at O(kn2),

R3-9 SASIMI 2025 Proceedings

- 205 -



Fig. 1. System architecture of the speculative execution system

Fig. 2. Overview of speculative execution using BiCGSTAB and
GJE methods

where k is the iteration count, offering efficiency for large
matrices but with convergence depending on problem
characteristics. Since iterative methods can diverge, com-
bining them with direct solvers improves simulation sta-
bility.

Considering these characteristics, we propose a specula-
tive execution system that runs the BiCGSTAB method
in parallel with the GJE method. The speculative ex-
ecution technique, illustrated in Figure 2, follows these
principles:

Parallel Execution: Both the GJE solver and
BiCGSTAB solver are executed simultaneously
from the start of the computation.

Dynamic Selection: The result of the faster solver is
adopted; the other is aborted. If the BiCGSTAB
solver converges within a small number of iterations
(denoted as M in Figure 2), and is faster than GJE,
GJE is terminated early, reducing execution time.

Speculative execution allows the solver to dynamically
choose the fastest solution method, regardless of matrix
size or properties, consistently accelerating electronic cir-
cuit simulation.

Fig. 3. Solver unit used in the speculative execution system

C. Architecture of the Speculative Execution System

This section details the architecture of the proposed
speculative execution system (see Figure 3), which com-
prises the key following components:

GJE Unit: Triggered by the Solver Control Unit, this
unit runs the GJE algorithm (Algorithm 1) and sends
its solution to the Dynamic Selection Unit. If the
BiCGSTAB Solver Unit finishes first, the Solver Con-
trol Unit halts the GJE Unit.

BiCGSTAB Unit: Activated by the Solver Control
Unit, executes Algorithm 2 and forwards its solution
to the Dynamic Selection Unit. If the GJE Solver
Unit finishes first, BiCGSTAB is halted by the Solver
Control Unit.

Dynamic Selection Unit (isFaster): This unit con-
tinuously monitors the completion status of both the
GJE and BiCGSTAB solvers in real time. It adopts
the solution from the solver that finishes first and no-
tifies the Solver Control Unit about the completion
of the computation.

Solver Control Unit: Manages all solver units, spec-
ulative execution, and termination. Upon comple-
tion signal from the Dynamic Selection Unit, halts
all solver operations.

- 206 -



Algorithm 1: Gauss–Jordan Elimination[4]

1: C0 = A|b
2: for k ← 1 to N do
3: partialPivoting(Ck, k)
4: M = Ck−1(k, k)
5: if M == 0 then
6: continue
7: end if
8: for i← 1 to N do
9: L = Ck−1(i, k)

10: if k == i then
11: Ck(k, . . .) = Ck−1(k, . . .)
12: else
13: Ck(i, . . .) = MCk−1(i, . . .)− LCk−1(k, . . .)
14: Ck(i, . . .) =

1
2x estimate of M

Ck(i, . . .)
15: end if
16: end for
17: end for

Algorithm 2: BiCGSTAB
1: r = b−Ax
2: r′ = r

3: p = r
4: stop tol = (b · b)× tol error2

5: if (r · r) ≤ stop tol then

6: xnext = x
7: else

8: for k ← 0 to N − 1 do

9: dotR = (r′ · r)
10: α = dotR/(r′ ·Ap)

11: s = r− αAp

12: ω = (As · s)/(As ·As)
13: x = x+ αp+ ωs

14: r = s− ωAs

15: if (r · r) ≤ stop tol then

16: break

17: end if
18: β = α(r′ · r)/(ω × dotR)

19: p = r+ β(p− ωAp)

20: end for
21: xnext = x

22: end if

III. Implementation Methodology

This section describes the FPGA-based implementation
of the proposed speculative execution system. Section 3.1
introduces the implementation environment, while Sec-
tions 3.2 and 3.3 detail the optimization techniques ap-
plied to the solvers.

A. Implementation Environment

The proposed system was implemented on AMD’s
ZCU104 evaluation board, and its implementation envi-
ronment is summarized in Table I.

Double precision was used to ensure high numerical
accuracy, which was required for simulating the evalua-
tion circuits. The development process primarily relied
on high-level synthesis (HLS) using Vitis HLS, generat-
ing hardware from C/C++ source code.

TABLE I
Implementation Environment

Component Specification
FPGA Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC
Development Tools Vitis IDE 2023.1, Vivado 2023.1, Vitis HLS 2023.1
Clock Frequency 100 MHz
Data Type Double-precision floating-point (double)

B. Implementation and Optimization of the GJE Solver
Unit

To optimize the GJE solver for FPGA, we used a mod-
ified Gauss–Jordan Elimination (GJE) method that re-
duces division operations[4]. The solver employs a triply
nested loop (see Algorithm 1), with pipeline directives
applied to the middle loop (lines 8–16), which provided
better performance than pipelining the innermost or out-
ermost loops. Additional optimizations applied to the
GJE solver include:

Algorithm Acceleration: The solver supports linear
systems up to a fixed maximum matrix size, set at
synthesis. When solving smaller matrices, repeated
size checks in loop iterations degrade performance.
To address this, we fixed the loop count to the maxi-
mum size and used continue statements to skip un-
necessary computations, enabling efficient execution
for matrices of sub-maximal matrix sizes.

Insertion of Pipeline Directives: Pipeline directives
such as #pragma HLS PIPELINE II=N were used to
pipeline loops, where N (an integer) specifies the Ini-
tiation Interval (II). This optimization enables trade-
offs between latency and resource usage.

C. Implementation and Optimization of the BiCGSTAB
Solver Unit

The BiCGSTAB solver (see Algorithm 2) repeatedly
performs matrix-vector multiplications and inner prod-
ucts, with matrix-vector multiplication being the most
computationally intensive step. To accelerate this pro-
cess, pipeline directives were introduced into the matrix-
vector multiplication function, enabling parallel execu-
tion. The main optimizations are summarized as follows:

Pipelining of Matrix-Vector Multiplication:
Pipeline directives were inserted into the matrix-
vector multiplication to reduce the processing time
of each iteration.

Efficiency of Convergence Check: The residual
norm is calculated at the algorithm’s start, thereby
avoiding unnecessary iterations when the input
remains unchanged or the solution already satisfies
the convergence threshold.

Improved Stability: To prevent divergence caused by
division by zero in BiCGSTAB, a small perturbation
is added to the divisor when it becomes zero. In

- 207 -



this study, 10−8 is used; however, the optimal value
may vary depending on the problem characteristics.
Although this may slightly increase the number of
iterations, convergence is generally maintained.

Initial Guess Strategy: The solution from the most re-
cent speculative execution system is employed as the
initial guess. Starting from an estimate closer to
the final solution reduces the number of iterations
required.

IV. Evaluation

A. Evaluation Methodology

To analyze resource usage and latency with the matrix
size for the GJE and BiCGSTAB solvers, we conducted
the following evaluations:

Performance Evaluation of Individual Solvers:
We implemented GJE and BiCGSTAB for matrix
sizes 20×20, 40×40, 80×80, and 160×160. For each
size, we measured latency and resource usage to
assess solver efficiency across different dimensions.

Effectiveness of the Speculative Execution System:
We developed an electronic circuit simulator on the
target FPGA to evaluate how combining GJE
method and BiCGSTAB method via speculative
execution reduces computation time in circuit simu-
lations. Note that real-time capability such as input
signal sampling rate synchronization with simulator
operation were not evaluated in this study.

B. Evaluation Results: Resource Usage and Latency of
Individual Solvers

First, to independently evaluate each solver, we var-
ied the matrix size from 20×20 to 160×160, measuring
latency and resource usage. For FPGA implementation,
we adjusted the Initiation Interval (II) for each solver as
described in Sections 3.2 and 3.3, aiming to select the
fastest solver whose resource usage remained below 50%.
Table II summarizes the results for GJE and BiCGSTAB
at each matrix size.

TABLE II
Latency and resource usage of each solver

Matrix
Size

Solver
Latency1

(unit: cycle)
Resource usage (unit: piece)

II
BRAM DSP FF LUT

20×20
GJE 8,691 84 294 21,130 29,266 16

BiCGSTAB 1,447 42 605 130,843 76,366 1

40×40
GJE 33,751 164 574 40,298 55,787 16

BiCGSTAB 2,800 82 605 219,881 108,280 2

80×80
GJE 161,791 324 756 68,996 81,124 20

BiCGSTAB 6,999 152 465 110,720 78,484 8

160×160
GJE 6,301,633 94 38 21,247 15,638 242

BiCGSTAB 15,719 266 550 160,404 114,994 14

1The latency of the BiCGSTAB solver is the latency per iteration
and does not include memory initialization time within the solver.

From the results, the GJE solver’s latency increased
sharply with matrix size, especially between 80×80 and
160×160. In contrast, BiCGSTAB solver latency per iter-
ation rose more gradually. However, total BiCGSTAB la-
tency depends on the required number of iterations, which
varies with matrix properties and initial values. Thus,
comprehensive evaluation requires individual verification.
Regarding resource usage, the GJE solver generally re-

quired more resources as matrix size increased, but for 160
× 160 matrices, usage decreased due to FPGA resource
constraints limiting optimization. Reducing the initia-
tion interval (II) caused resource usage on the ZCU104 to
exceed 100%, making implementation infeasible. In con-
trast, the BiCGSTAB solver’s resource usage increased
steadily with matrix size, and even at 160 × 160, further
optimization was possible.

C. Effectiveness of Speculative Execution

To evaluate the effectiveness of speculative execution,
we implemented the circuit simulator (Figure 1) on a
ZCU104 board and evaluated its computational efficiency
using several benchmark circuits. For simplicity, external
input signals (Input Voltage in Figure 1) were internally
generated by the FPGA at each simulation step. We mea-
sured the average latency from forming linear equations
to solving them at each simulation time step using an
embedded runtime debugger.

TABLE III
Resource usage for the entire electronic circuit simulator

with a matrix size of 20x20 (unit: piece)

BRAM DSP FF LUT
191(31%)2 850(49%) 174,128(38%) 159,322(69%)

Due to FPGA resource constraints, the simulator was
designed for 20×20 matrices. Table III shows that LUT
usage reaches about 70% for this size, synthesized with
Vivado. As a result, larger matrices—which might further
improve performance—were not implemented.

D. Benchmark Circuits

Two types of circuits were used for evaluation:

2-stage Cockcroft–Walton circuit (Figure 4):
A voltage-doubling rectifier. The modified nodal
analysis yields a 6×6 linear system.

6-stage RLCG circuit (Figure 5) : A filter with resis-
tors (R), inductors (L), capacitors (C), and conduc-
tances (G), resulting in a 20×20 linear system.

2The numbers in parentheses are FPGA resource utilization rates
for ZCU104.

- 208 -



Fig. 4. 2-stage Cockcroft–Walton circuit

Fig. 5. 6-stage RLCG circuit

E. Input Signals for Benchmark Circuits

The benchmark circuits were tested with 1 kHz sine,
square (rise/fall: 20 µs), and triangular waves (rise/fall:
20 µs) to evaluate the speculative execution system. The
2-stage Cockcroft circuit used a 10 V amplitude, and the
6-stage RLCG circuit used 5 V. The simulation interval
was set to 1 µs.

F. Evaluation Results

Table IV presents the average latency of each solver for
benchmark circuit simulations with test inputs. In ad-
dition, the simulation results of each benchmark circuit
using the proposed solver are compared with those ob-
tained from LTspice.
For the two-stage Cockcroft–Walton circuit (Figures

6–8), the output voltage waveforms for sine, square, and
triangular input signals are shown. Similarly, for the six-
stage RLCG circuit (Figures 9–11), the output voltages
for one cycle of each input waveform are presented.
These results indicate that the simulation outcomes us-

ing the proposed solver are comparable to those obtained
with LTspice. When the matrix size is small, the GJE
solver demonstrates higher speed, and speculative execu-
tion enables automatic selection of the fastest solver.

TABLE IV
Evaluation results of the benchmark electronic circuit

Solve latency (unit: cycle/solution)
Benchmark Circuits Input Signals GJE BiCGSTAB Speculative

solver solver Execution solver

2-stage Cockcroft–
Walton circuit

sine 6.923 10,673 6,924
square 6,959 10,937 6,960

triangular 6,932 10,296 6,932

6-stage
RLCG circuit

sine 16,887 38,631 16,882
square 16,645 36,988 15,526

triangular 17,309 40,034 17,308

Fig. 6. Simulation results of the 2-stage Cockcroft–Walton circuit
(sine wave)

Fig. 7. Simulation results of the 2-stage Cockcroft–Walton circuit
(square wave)

V. Discussion

This section discusses the effectiveness of the specula-
tive execution system based on the evaluation results.

A. Theoretical Considerations from Solver Evaluation

Table II shows that GJE solver latency increases rapidly
with matrix size due to its O(n3) computational complex-
ity. In contrast, BiCGSTAB grows more gradually, with
per-iteration complexity of O(n2).
Therefore, for small matrix sizes (e.g., 20 × 20), the

GJE solver is faster and more advantageous than the
BiCGSTAB solver. However, as the matrix size increases,
the latency of the GJE solver increases significantly, and
the BiCGSTAB solver may become faster overall.

B. Practical Evaluation of Speculative Execution

For a 20 × 20 matrix, speculative execution reduced
computation time by exploiting solver characteristics.
Especially with large circuits and square wave inputs,
BiCGSTAB required fewer iterations, highlighting the
benefits of speculation. However, this approach signif-
icantly increased resource usage compared to the GJE
solver. Thus, further accelerating GJE may lower resource
demands while retaining high computational speed.
In fact, for both solvers corresponding to a matrix size

of 20 × 20, optimizations such as memory access paral-
lelization through data replication and loop unrolling were
applied. As a result, a GJE solver with a latency of 2,291

- 209 -



Fig. 8. Simulation results of the 2-stage Cockcroft–Walton circuit
(triangular wave)

Fig. 9. Simulation results of 6-stage RLCG circuit (sine wave)

cycles was achieved. Applying similar optimizations to
the BiCGSTAB method yielded a solver with a latency
of 945 cycles per iteration. However, these optimizations
also led to an increase in the resource usage of the GJE
solver.

Overall, for 20×20 matrices, the optimized GJE solver
is fast enough that speculative execution with BiCGSTAB
offers limited benefit. Therefore, for speculative execu-
tion to be advantageous, BiCGSTAB must significantly
outperform GJE.

C. Differences in Speculative Execution Effectiveness
Based on Circuit Scale

Speculative execution consistently selects the faster
solver, regardless of matrix or circuit size. For small cir-
cuits (e.g., 2-stage Cockcroft–Walton), GJE is faster and
thus chosen. For larger circuits (e.g., 6-stage RLCG),
speculative execution lowers latency compared to GJE,
reducing computation time. Even with the small-scale
20×20 solver used in evaluation, its effectiveness was
demonstrated.

Section 5.2 shows that when both solvers are well-
optimized, GJE is faster for small matrices like 20×20,
making speculative execution largely ineffective. How-
ever, although practical evaluation under these conditions
could not be performed due to resource constraints, as dis-
cussed in Section 4.2, for circuits involving larger matrix
sizes, the GJE method—difficult to accelerate under re-
source constraints—can serve as the reliable solver, while
the BiCGSTAB solver—more easily accelerated—can be

Fig. 10. Simulation results of 6-stage RLCG circuit (square wave)

Fig. 11. Simulation results of 6-stage RLCG circuit (triangular
wave)

executed speculatively. This approach could significantly
reduce average latency and achieve substantial speed-up.

VI. Conclusion

We implemented a speculative execution system com-
bining GJE and BiCGSTAB on an FPGA-based simula-
tor, achieving continuous simulation with delays of about
6.9k cycles (69 µs) for a two-stage Cockcroft–Walton cir-
cuit and 17k cycles (170 µs) for a six-stage RLCG circuit.
These results confirm high-speed performance for 20 × 20
matrices. However, for larger matrices, the resource usage
of the GJE solver increases significantly, making optimiza-
tion challenging. To address this issue, we integrated the
BiCGSTAB solver, which exhibits more efficient resource
utilization, aiming to achieve faster computation and sta-
ble convergence. Future work will focus on evaluating the
solver’s effectiveness for larger-scale matrices.

References

[1] M. Baghdadi, E. Elwarraki and I. Ait Ayad, “FPGA-Based
Hardware-in-the-Loop (HIL) Emulation of Power Electronics Cir-
cuit Using Device-Level Behavioral Modeling,” MDPI Journal, De-
signs, vol 7, no. 5:115, 2023.

[2] F. Montano, T. Ould-Bachir and J. P. David, “An Evaluation of a
High-Level Synthesis Approach to the FPGA-Based Submicrosec-
ond Real-Time Simulation of Power Converters,” IEEE Trans. Ind.
Electron., vol.65, no.1, pp.636–644, 2018.

[3] L. W. Nagel, “SPICE2: A Computer Program to Simulate Semi-
conductor Circuits,” EECS Department, University of California,
Berkeley, 1975.

[4] J. Pierre, “Low latency and division free Gauss–Jordan solver in
floating point arithmetic,” Journal of Parallel and Distributed
Computing, vol.106, pp.185–193, 2017.

- 210 -


