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Abstract— We present a novel approach to solving the floor-
planning problem by leveraging fine-tuned Large Language Mod-
els (LLMs). Inspired by subitizing, the human ability to instantly
count small numbers of items at a glance, we hypothesize that
LLMs can similarly address floorplanning challenges accurately.
Our experimental results demonstrate that LLMs achieve high
success and optimal rates while attaining relatively low average
dead space. These findings underscore the potential of LLMs as
promising solutions for complex optimization tasks in VLSI de-
sign.

I. Introduction

As semiconductor manufacturing processes advance, chip de-
signs increasingly incorporate various Intellectual Properties
(IPs) to expedite development cycles. While integrating IPs ac-
celerates the design process, it concurrently amplifies the com-
plexity of chip layout allocation. Floorplanning, a pivotal stage
in the Electronic Design Automation (EDA) workflow, entails the
strategic placement of functional modules on a chip during the
initial design phase. Effective floorplanning must navigate multi-
ple constraints, including minimizing dead space and wire length,
managing thermal dissipation, and optimizing the utilization of
chip real estate. Additionally, the ability to rotate modules or ad-
just their width-to-height ratios can enhance their fitting within
the designated chip area, further complicating the layout process.

Over the years, several representations for floorplanning re-
sults have been introduced, such as sequence pairs [1], normalized
Polish expressions [2], slicing trees [3], and B*-trees [4]. Due to
the NP-hard nature of the floorplanning problem, traditional ap-
proaches have predominantly employed optimization techniques
like Simulated Annealing (SA) and Integer Linear Programming
(ILP).

SA-based floorplanning has been extensively explored in early
research. For instance, [2] utilized normalized Polish expressions

in conjunction with SA to design efficient floorplans. Building
upon this, [5] extended SA methodologies to accommodate three-
dimensional floorplanning. Further advancements were made by
[6], who introduced a fast three-stage SA algorithm based on
B*-tree representation, achieving high success rates with reduced
dead space. Similarly, [7] presented a hybrid SA approach that
incorporated a novel greedy strategy alongside B*-tree represen-
tations, enhancing non-slicing floorplanning accuracy.

ILP approaches have been investigated for floorplanning. [8]
employed ILP to simultaneously minimize interconnection delays
and chip area, addressing critical performance metrics in floor-
planning. Additionally, [9] demonstrated the application of ILP
in reticle design and wafer dicing processes for multiple project
wafers, highlighting its versatility in related semiconductor man-
ufacturing tasks.

Furthermore, machine learning (ML) has opened new avenues
for addressing floorplanning challenges. Researchers have in-
creasingly explored ML-based solutions to complement or replace
traditional optimization techniques. For example, [10] introduced
GoodFloorplan, which leverages reinforcement learning to min-
imize both area and wire length, yielding impressive results on
MCNC and GSRC benchmarks. Building on this, [11] adopted
deep reinforcement learning strategies based on sequence pairs
to achieve superior floorplanning solutions. Furthermore, [12]
integrated hybrid reinforcement learning with genetic algorithms
(GA), demonstrating significant reductions in wire length and
area in the resultant floorplans.

Large Language Models (LLMs) have revolutionized various
domains by automating complex tasks and enhancing decision-
making processes. Despite their transformative impact, the ap-
plication of LLMs to floorplanning remains relatively unexplored,
primarily due to challenges related to data representation and the
scarcity of large-scale, high-quality datasets. Inspired by the con-
cept of subitizing, as first introduced by [13], which describes the
human ability to instantly and accurately recognize the number

R3-12 SASIMI 2025 Proceedings

- 223 -



of items in a small set, we hypothesize that LLMs can similarly
provide rapid and accurate solutions to floorplanning problems
after exposure to a sufficient number of examples.

Supporting this hypothesis, [14] provided experimental evi-
dence indicating that human reaction times for recognizing fewer
than four items range between 40 to 100 milliseconds per item.
However, for larger quantities, reaction times escalate to 250 to
350 milliseconds, suggesting a shift in cognitive processing strate-
gies. They proposed three theories of enumeration: density-
based, pattern-based, and working memory explanations. Draw-
ing an analogy, we posit that LLMs can efficiently recognize and
generate optimal solutions for small-scale floorplanning tasks by
leveraging pattern recognition and memory-based strategies akin
to human cognitive processes.

The paper is organized as follows: Section II provides a de-
tailed description of the floorplanning problem, including the cal-
culation of dead space and the iterative process for optimizing
module placements. Section III outlines our proposed method-
ology, which comprises two primary stages: fine-tuning and in-
ference. Section IV presents the experimental results of our
approach, comparing two methodologies—local fine-tuning with
Unsloth and leveraging the OpenAI API to fine-tune GPT4o-mini.
Finally, Section V concludes the paper and outlines future re-
search directions.

II. Problem Description

In the initial stages of the EDA workflow, floorplanning in-
volves determining the approximate placement of each module
on a chip. Given a set of n modules P = {p1, p2, . . . , pn}, each with
specified dimensions—width wi and height hi—the objective is to
arrange all modules within a two-dimensional space to minimize
dead space. In this context, each module possesses a fixed shape,
prohibiting rotations or dimensional adjustments to simplify the
floorplanning process for LLMs. For example, Fig. 1 illustrates
three modules needing to be floorplanned and one possible floor-
plan. As the number of modules increases, the problem becomes
significantly more complex.

Fig. 1.: Floorplanning problem with three modules

To record floorplanning results, a straightforward approach is
to directly store the coordinates of each module. However, this
method becomes inefficient for large-scale floorplanning tasks, re-
quiring substantial memory and computational resources. For
representing a floorplan, there are two primary categories: non-
slicing and slicing floorplans. A slicing floorplan implies that
modules are obtained through horizontal or vertical cuts, whereas
a non-slicing floorplan captures the relative vertical and horizon-
tal relationships between modules.

This paper focuses on slicing floorplan representation, al-
though potentially losing some possible floorplans, offers easier
generation and storage. Fig. 2 illustrates a slicing floorplan and
its corresponding slicing tree. We first slice vertically to separate
p1 from the composite module containing p0 and p2, denoting the
root node as ”V” (vertical slicing). The left (or bottom) module
is assigned as the left child node to maintain consistency. Subse-
quently, a horizontal slice separates p0 and p2, represented by the
”H” in the tree. The final tree structure is shown in the figure.

Fig. 2.: Turning a slicing floorplan into a slicing tree

Dead space is defined as the unused area that arises from gaps
between adjacent modules. The calculation of dead space depends
on the relative positioning of the modules. Specifically, when two
modules are placed side by side along the x-axis, the dead space
is computed as the product of the width of the module with the
smaller height and the absolute difference in their heights. Sim-
ilarly, when two modules are stacked along the y-axis, the dead
space is computed as the product of the height of the module with
the smaller width and the absolute difference in their widths.

For two adjacent modules pi and p j with dimensions (wi, hi)
and (w j, h j), respectively, the dead space is defined as follows:

dead space(pi, pi+1) =



dshor(pi, pi+1), if pi and pi+1

are horizontally adjacent,

dsver(pi, pi+1), if pi and pi+1

are vertically adjacent.
(1)

where the dshor(pi, pi+1) and dsver(pi, pi+1) functions are defined
as follows:

dshor(pi, p j) =

wi × |hi − h j|, if hi ≤ h j,

w j × |hi − h j|, otherwise.
(2)

dsver(pi, p j) =

hi × |wi − w j|, if wi ≤ w j,

h j × |wi − w j|, otherwise.
(3)

For scenarios involving more than two modules, the dead space
calculation is generalized through an iterative process that selects
two modules, calculates their dead space, and merges them into a
single composite module. This process continues until all modules
are combined into a single composite module. The dimensions of
the composite module are updated as follows:

if horizontally adjacent: wnew = wi + wi+1, hnew = max(hi, hi+1),
(4)

if vertically adjacent: wnew = max(wi,wi+1), hnew = hi + hi+1.

(5)
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(a) Non-optimal floorplan (b) Slicing tree for the floorplan

(c) Dead space for horizontal ad-
jacency

(d) Dead space for vertical adja-
cency

Fig. 3.: Dead space calculation for floorplanning (DS: Dead
Space)

Fig. 3 illustrates examples of dead space calculations for hor-
izontally and vertically adjacent modules. Fig. 3a shows a non-
optimal floorplan, and Fig. 3b depicts the corresponding slicing
tree. We can traverse the tree in post-order, calculate the dead
space between two adjacent modules, merge them into a com-
posite module, and update the dimensions. Fig. 3c and 3d show
the dead space calculation for horizontal and vertical adjacency,
respectively. In this case, the total dead space is computed as
DS 0 + DS 1. The optimal floorplan is defined as the one with the
minimum dead space.

III. Methodology

Fig. 4 illustrates an overview of our proposed workflow, which
comprises two primary stages: fine-tuning and inference.

A. Fine-tuning Stage

The fine-tuning stage, depicted in Fig. 4a, involves generating
a comprehensive dataset and subsequently fine-tuning a Large
Language Model (LLM) to predict optimal floorplanning solu-
tions.

Dataset Generation: The scarcity of extensive floorplanning
datasets has historically limited the effectiveness of machine
learning approaches in this domain. While one might consider
using an existing floorplanner to generate large datasets, this ap-
proach is time-consuming and relies on obtaining circuit data
(e.g., from the MCNC benchmarks), which is not always feasi-
ble. Moreover, even real data generated by floorplanners may not
be optimal. To overcome these challenges and inspired by [15],
we introduce a novel data generation technique based on recur-
sive slicing and tree encoding. The process, illustrated in Fig. 5,
comprises the following steps:

(a) Fine-tuning stage

(b) Inference stage (FT: Fine-tuned model)

Fig. 4.: Overview of our workflow

1. Initial Rectangle Generation: Generate a rectangle repre-
senting the chip boundary with random width and height.

2. Recursive Slicing:

• Randomly select a rectangle (module) and slice it ei-
ther horizontally or vertically.

• Each slicing operation yields two adjacent modules;
the slicing direction determines whether the width or
height remains constant.

• Designate the left (or bottom) module as the left child
node in the slicing tree.

• Continue the recursive slicing until a complete slicing
tree is formed.

3. Tree Encoding: Encode the resultant slicing tree using post-
order traversal. Each module is labeled as pi, and slicing
operations are denoted by ’H’ (horizontal) or ’V’ (vertical),
separated by semicolons.

We choose a slicing tree representation because it enables eas-
ier dataset generation compared to alternative methods. In par-
ticular, using post-order traversal (instead of pre-order) avoids
the generation of long sequences of consecutive ”H” or ”V” op-
erations, which can lead to errors in LLM outputs. For exam-
ple, a pre-order traversal might yield ”V;H;p0;p2;p1,” which be-
comes increasingly problematic as dataset size grows. This encod-
ing effectively captures the hierarchical structure of the floorplan,
enabling the creation of large-scale datasets necessary for robust
LLM fine-tuning.

The fine-tuning process involves training the LLM on datasets
tailored to specific module counts (16 and 24 modules) to vali-
date our hypothesis that LLMs can perform floorplanning in a
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(a) Rectangle Generation (b) Vertical Slicing

(c) Horizontal Slicing (d) Tree Encoding

Fig. 5.: Illustration of the recursive slicing and tree encoding
process.

manner akin to human subitizing. The input to the LLM consists
of module names along with their respective widths and heights,
combined with background instructions. The desired output is
a slicing tree in post-order traversal that represents the optimal
floorplan.

B. Inference Stage

In the inference stage, as illustrated in Fig. 4b, the fine-tuned
LLM receives a set of modules as input and generates a corre-
sponding floorplanning solution. However, due to inherent limi-
tations in language models, the LLM occasionally produces not
optimal results or even illegal slicing trees. Consequently, the
LLM’s output cannot be used directly; instead, it should be inte-
grated with a traditional floorplanner to provide guidance, rather
than replacing conventional floorplanning methods.

C. Experimental Setup

We conducted experiments using two approaches. First, we
utilize Unsloth [16], an efficient framework for locally fine-tuning
open-source LLMs. Second, we leverage the OpenAI API to fine-
tune a proprietary LLM, specifically GPT4o-mini [17].

C.1. Dataset Specifications

• Module Counts: Experiments were performed on datasets
with 16 and 24 modules. These counts were inspired by the
ami33 and ami49 circuits from the MCNC benchmark, orig-
inally containing 33 and 49 modules, respectively. To align
with our model requirements, we combined two to four mod-
ules with identical widths or heights into single modules.

• Dataset Sizes: The training datasets comprised 80,000 and
120,000 optimal floorplans for the 16-module and 24-module
cases, respectively. Larger module counts necessitated
larger datasets to enhance fine-tuning performance.

• Test Samples: Each model was evaluated on 50 unseen test
samples generated using the same recursive slicing and en-
coding methodology as the training data.

C.2. Metrics for Evaluation

• Success Rate (S ): Percentage of test samples yielding a legal
slicing tree.

• Optimal Result Rate (O): Percentage of floorplans with zero
dead space, indicating an optimal solution.

• Dead Space Ratio (D): Ratio of dead space to the summation
of all module areas in the floorplan.

The metrics are mathematically defined as:

S =
Nlegal

Ntotal
× 100% (6)

O =
Noptimal

Ntotal
× 100% (7)

D =
∑n−1

i=1 dead space(pi, pi+1)∑n
i=1 (wi × hi)

(8)

where Nlegal is the number of test samples with legal slicing
trees, Ntotal is the total number of test samples, Noptimal is the
number of optimal floorplans, and dead space(pi, pi+1) is the dead
space between two adjacent modules and can be calculated using
Equations 1.

C.3. Model Fine-tuning Details

• Local LLM Fine-tuning: Models fine-tuned locally include
LLaMA 3.1 (8B) [18], LLaMA 3.2 (3B) [19], Mistral v0.3
(7B) [20], and Phi-4 (13B) [21]. The Unsloth framework
was chosen for its efficiency, achieving 2-5x faster fine-tuning
with 70% less memory usage compared to traditional frame-
works. Fine-tuning was performed on a single NVIDIA
GeForce RTX 4070 Ti Super with 16 GB of VRAM over 200
epochs, completing in approximately 30 minutes.

• OpenAI API Fine-tuning: Due to hardware constraints that
made it challenging to fine-tune larger LLMs locally, we
opted to fine-tune OpenAI’s GPT4o-mini. Initial fine-tuning
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on the 16-module dataset yielded promising results. Al-
though we expanded the dataset size to test the capability
of LLMs locally, budget limitations restricted us to re-fine-
tuning only the 16-module model, resulting in 6,253 samples
for GPT4o-mini.

IV. Experimental Results

We present our experimental results for two approaches: (1)
using Unsloth [16], an efficient framework for fine-tuning open-
source LLMs locally, and (2) leveraging the OpenAI API to fine-
tune a proprietary LLM for the floorplanning task. The experi-
ments are conducted on datasets containing 16 and 24 modules.
The choice of these module counts was inspired by the ami33 and
ami49 circuits from the MCNC benchmark, which originally con-
tain 33 and 49 modules, respectively. To align with the require-
ments of our fine-tuned models, we combine two to four modules
(with the same width or height) into a single module. However,
since benchmark data does not always form rectangles, our ex-
periments are based on custom benchmarks that will be made
publicly available in the future. For each test sample, the LLM
generates five outputs, and the best result is selected for evalua-
tion. The equations used to compute these metrics are provided
in Equations 6 to 8.

Fig. 6 illustrates the success rate for the different fine-tuned
LLMs, which is defined as the percentage of test samples that
produce a legal slicing tree. In the 16-module scenario (Fig. 6a),
GPT4o-mini, Phi-4 (13B), and Llama3.1 (8B) achieve high suc-
cess rates—with nearly 100% at 16 modules—while Mistral v0.3
(7B) shows a noticeable decline at 16 modules, failing to meet our
hypothesis that the model should complete the specified module
count. Similarly, in the 24-module scenario (Fig. 6b), GPT4o-mini
demonstrates near-perfect performance at lower module counts
with slight declines as the module count increases. In contrast,
Phi-4 (13B) and Llama3.1 (8B) perform well for the 16-module
case, whereas Mistral v0.3 (7B) and Llama3.2 (3B) achieve only
around a 60% success rate. Overall, these results indicate that
GPT4o-mini, Phi-4 (13B), and Llama3.1 (8B) are the most ro-
bust models for generating legal slicing trees in our floorplanning
tasks.

(a) 16-module scenario (b) 24-module scenario

Fig. 6.: Success rate of fine-tuned LLMs for different module
counts.

Fig. 7 shows the optimal rate for two fine-tuned LLMs, defined
as the percentage of floorplanning results that achieve an opti-
mal floorplan. In the 16-module scenario (Fig. 7a), GPT4o-mini
exhibits substantially higher optimal rates (ranging from 57% to
82%) compared to the other models. In contrast, Llama3.1 (8B)
records optimal rates up to only 4% for some module counts,

while Llama3.2 (3B), Mistral v0.3 (7B), and Phi-4 (13B) achieve
negligible rates (mostly between 0% and 2%). In the 24-module
scenario (Fig. 7b), GPT4o-mini attains optimal rates up to 28% at
22 modules, though it decreases to 12% at 24 modules. The other
models consistently produce 0% optimal results. These findings
indicate that GPT4o-mini is significantly more effective at gener-
ating optimal floorplanning solutions, especially as the number of
modules increases, though its performance decreases with higher
module counts, reflecting inherent limitations.

(a) 16-module scenario (b) 24-module scenario

Fig. 7.: Optimal rate of fine-tuned LLMs for different module
counts.

Fig. 8 presents the average dead space values for the legal slic-
ing trees generated by the fine-tuned LLMs. (Only legal slicing
trees are considered in the computation.) Lower values indicate a
more efficient floorplan with less unused space. In the 16-module
scenario (Fig. 8a), GPT4o-mini achieves very low average dead
space values (ranging from 0.03 to 0.15), whereas the other mod-
els exhibit significantly higher values: Llama3.1 (8B) ranges from
0.63 to 0.95, Llama3.2 (3B) from 0.91 to 1.20, Mistral v0.3 (7B)
from 0.83 to 1.18, and Phi-4 (13B) from 0.63 to 1.15. In the 24-
module scenario (Fig. 8b), GPT4o-mini maintains low average
dead space values (between 0.15 and 0.25), while Llama3.1 (8B)
ranges from 1.02 to 1.37, Llama3.2 (3B) from 1.26 to 1.76, Mis-
tral v0.3 (7B) from 1.27 to 1.54, and Phi-4 (13B) from 1.21 to 1.54.
These results demonstrate that GPT4o-mini not only generates
legal slicing trees at a higher success rate but also produces sig-
nificantly lower dead space, indicating a more efficient allocation
of chip area.

(a) 16-module scenario (b) 24-module scenario

Fig. 8.: Average dead space of fine-tuned LLMs for different
module counts.

V. Conclusion

We introduced an innovative approach to solving the floorplan-
ning problem in VLSI design by leveraging fine-tuned Large Lan-
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guage Models (LLMs). We developed an efficient representation
and a novel method for generating high-quality datasets neces-
sary for effective LLM fine-tuning. Our experimental evaluation
revealed that fine-tuned LLMs, particularly GPT4o-mini, achieve
high success and optimal rates while producing significantly lower
average dead space, resulting in more efficient floorplans com-
pared to traditional and other ML-based methods. These find-
ings support our hypothesis that LLMs can perform floorplan-
ning tasks in a manner akin to human subitizing, demonstrating
their potential as powerful tools for addressing complex optimiza-
tion problems in VLSI design.

Despite these promising results, the performance of GPT4o-
mini diminishes at 24-module scenario, highlighting the need for
further research to enhance scalability and incorporate addi-
tional design constraints. Future work should explore the integra-
tion of advanced LLM architectures and the inclusion of compre-
hensive optimization objectives—such as wire length minimiza-
tion, thermal management, and power consumption—to develop
more robust and practical floorplanning solutions. Our findings
pave the way for more intelligent and efficient design automation
processes in VLSI design.
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