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Abstract— In high-level synthesis technology, opti-
mizing code especially nested loops is often required
in order to improve the performance of the generated
hardware. While the polyhedral model facilitates the
construction of a complete nested loop, finding an op-
timal solution minimizing instruction executions re-
mains challenging. This paper proposes using rein-
forcement learning to effectively explore the optimal
loop structure. Performance evaluation is conducted
by analyzing the number of instructions executed in
the generated code and the circuit synthesized by the
high-level synthesis tool.

I. INTRODUCTION

High-level synthesis technology automatically generates
hardware description language from high-level languages
such as C, but it is necessary to optimize the code before
high-level synthesis in order to maintain the performance
of the automatically generated hardware. In particular,
when there are multiple nested loops, each must be exe-
cuted sequentially, which requires a huge number of exe-
cutions. In this study, we focus on loop fusion, which is
used for loop optimization.

Loop fusion is an optimization technique that merges
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multiple loops into a single loop, which improves perfor-
mance by reducing execution time, reducing the number
of cycles, and increasing data locality. Figure 1 shows
an example of loop fusion, with SO and S1 indicating the
executed instruction statements. In loop fusion, multiple
loops as in the left of Figure 1 are merged into a single
nested loop as in the middle and right. However, in many
cases it is difficult to obtain an optimal solution with the
fewest cycles as a result of loop fusion. Compared to the
middle of Figure 1, the right shows that the number of
cycles has been reduced from 200 before the fusion to 100
after, which is because parallel execution is possible in the
right of Figure 1.

However, it is not always safe to perform loop fusion.
Optimization via loop fusion must be performed under the
condition that either there are no dependencies between
data before and after fusion or any such dependencies
are preserved after fusion. If fusion is performed ignoring
data dependencies, then the integrity of the calculation
results may be compromised. In this study, we examine
an optimization method for this loop fusion based on the
polyhedral model using machine learning and particularly
reinforcement learning.

Pluto[1] is an automatic parallelization tool that per-
forms high-level transformations such as nest loop op-
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for(i=0; i<10; i++)
for(j=0; j<10; j++)
S0;

for(i=0; i<10; i++){
for(j=0; j<10; j+-+) 1: for(i=0; i<10; i++)
S0: 2. for(j=0; j<10; j++)
for(j=0; j<10; j++) 3 80
S1: 4: S1;

1: 1
2: 2:
3 H 3:
4: for(i=0; i<10; i++) 4;
5. for(j=0; j<10; j++) 5:
6: S1; 6:}

Fig. 1. Example of loop fusion

timization and parallelization. It utilizes a polyhedral
model for compiler optimization and proposes automatic
parallelization technology by finding affine transforma-
tions for efficient tiling, thereby increasing parallelism and
improving memory reference locality. In OLS[2], perfor-
mance is improved by performing post-processing on the
polyhedral model obtained by Pluto. Specifically, it per-
forms processing to replace dependencies filled with inner
loops, which cause performance degradation, with outer
loops. From this, it can be seen that the performance of
OLS depends on preprocessing such as Pluto, and there
are cases where its optimality is limited. In this study, we
propose an automatic generation method for fully nested
loops by learning this functionality using an optimization
technique based on polyhedral models and reinforcement
learning, aiming to improve performance.

This paper is organized as follows. Section 2 provides
background information, Section 3 explains the proposed
method, Section 4 presents the experimental results, and
Section 5 concludes.

II. BACKGROUND

A. Polyhedral Model

This subsection briefly explains the polyhedral model
[3], which is a mathematical technique used in compiler
optimization. In particular, it is used widely for loop
optimization in numerical and scientific computing [4].
The polyhedral model comprises iterative domains and
multidimensional schedules, among other aspects. The
repetition vector of a statement S is defined as ig =
(11,92, ... 9mg). Here, i1,i2,...,9m is the sequence of
loop index variables that contain the instruction state-
ment S, and they are ordered from the outermost loop 41
to the innermost loop 4,,,. The repetition domain D of
the instruction statement S is the set of values that ;5 can
take. In the polyhedral model, this repetition domain is
expressed as a set of points on a multidimensional integer
lattice, and it is interpreted as a polyhedron. For example,
the repetition vector of the instruction statement S in the
double loop shown in Figure 2 is expressed as ig = (4,7),
and this repetition domain can be visualized as the 5 X 5
lattice of points shown in Figure 3.

An important concept in the polyhedral model is the
schedule, which is a mathematical expression that as-
signs the execution order of instruction statement S and

1: for(i=0; i<5; i++)
2. for(j=0; j<5; j++)
3 AT = ALIGT + BII

Fig. 2. Example of nested loops
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Fig. 3. Integer lattice of points in Figure2

is expressed as a multidimensional vector such as S; =
(40,41, -.,%in). Each dimension of this vector is composed
of constants and loop variables, and it is executed from
left to right. The multidimensional vector of the schedule
contains a scalar dimension expressed only by constants
and a loop dimension expressed by a loop variable. The
scalar dimension determines the execution order of the
loop, and the loop dimension indicates the loop to be ex-
ecuted. In this study, we make changes to this schedule to
convert the execution order and apply various optimiza-
tions using the polyhedral model. The optimized polyhe-
dral model is ultimately converted to code in C or another
language and output in an executable form.

B. Outer Loop Shifting

OLS[2] is a technique that enables the complete fusion
of loops that could not be fused in Pluto. Loop fusion,
which fuses multiple loops to generate efficient hardware
in high-level synthesis and enables parallel scheduling of
operations, contributes significantly to performance im-
provement. Pluto, an optimization method based on a
polyhedral model, is powerful because it can optimize lo-
cality and outer parallelism simultaneously, enabling au-
tomatic loop fusion. However, in some cases, it cannot
completely fuse loops, resulting in performance that does
not fully utilize HLS. In response, Kato et al. proposed
Outer Loop Shifting (OLS) as a post-processing step for
Pluto. OLS is a technique that shifts the scalar dimension
in a multidimensional schedule to the outer loop, enabling
the complete fusion of loops that could not be fused by
Pluto. While Pluto alone achieves only partial fusion in
benchmarks, applying OLS enables the complete fusion of
all loops and reduces the execution cycle. However, this
method is a deterministic approach that seeks the mathe-
matically optimal solution and performs post-processing,
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so its performance depends on the pre-processing. OLS
uses Pluto as its preprocessing step, which is an opti-
mization technique targeting compilers. While Pluto’s
improvements in parallelism and locality affect HLS per-
formance, OLS’s performance depends on the optimiza-
tion results of Pluto. In contrast, this method explores
flexible search that is not limited to the solutions derived
by Pluto by directly manipulating the polyhedral model
using reinforcement learning.

C. Reinforcement Learning

Reinforcement learning [5] is a machine-learning
method whereby agents learn optimal action policies via
repeated trial and error through interaction with a dy-
namic environment. In this method, the aim of an agent
is to choose an action that maximizes its reward. Specif-
ically, the agent receives the current state from the envi-
ronment as input and decides on an action based on this.
The environment receives the agent’s action, presents a
new state, and gives the agent a reward based on the
action. The agent uses this feedback to learn how to se-
lect actions that maximize reward. Reinforcement learn-
ing provides a framework that can effectively explore vast
search spaces through trial and error with randomness.
Therefore, compared to deterministic methods that derive
solutions based on explicit analysis and designer knowl-
edge, reinforcement learning enables more flexible and
diverse optimization.Additionally, reward design enables
exploration with high degrees of freedom. For example,
by incorporating HLS tools into the environment, met-
rics such as start interval II, latency, and resource us-
age—which are difficult to formalize mathematically—
can be used as rewards, enabling learning that directly
improves HLS performance.In this study, due to the com-
plexity of the processing, learning was not performed with
HLS tools included in the environment. However, learn-
ing was conducted with the aim of improving parallelism
and reducing latency using the total number of execution
instructions described in Chapter 4. The reinforcement
learning model Proximal Policy Optimization (PPO) [6]
used in this study is a type of reinforcement learning al-
gorithm based on policy gradient methods proposed by
Schulman et al[7]. In the conventional trust region pol-
icy optimization (TRPO) [8], a constraint based on the
Kullback—Leibler divergence was introduced to prevent
the destabilization of learning due to appreciable updates
of the policy. However, TRPO had high computational
cost, and implementation complexity was also an issue.
By contrast, PPO introduces clipping to appropriately
limit the update of the policy, and it is possible to ensure
the stability of learning with a simple implementation and
low computational cost. In PPO, the following loss func-
tion is applied to control the change in the policy so that

it does not become excessive:

LCLIP(H) =E,; [min (rt(Q)At, clip (rt(G), 1—e 1+ e)At)}
(1
mo(at|se) . @
T (0t St)
Here, a; represents action, s; represents state, r; repre-
sents the probability ratio with respect to the past policy,
A, represents the advantage function, and e represents
the clipping range. In PPO, the update amount is lim-
ited when the probability ratio r; exceeds the range of
1 — € or 1+ ¢, preventing the destabilization of learning
due to excessive policy updates.

)
rt(9) = )

D. Loop Interchange

Loop interchange is an optimization technique that
changes the order of nested loops. Figure 4 shows an
example of conversion for multiple nested loops, with SO
and S1 indicating executable statements with loop vari-
ables ¢ and j.

This conversion example shows the case where the inner
and outer loops of the multiple loop for SO, which is the
executable statement in the third line, are swapped. In
this case, the schedule for the executable statement in the
third line is converted from SO = (i, ,0) to SO = (4,4, 0).

E. Loop Shifting

Loop shifting is an optimization technique that shifts
the repetition of a loop back and forth. Figure 5 shows an
example of a transformation for a multiply nested loop.

In this conversion example, the loop variables (i,j) of
S0, which is the executable statement in the third line on
the left of Figure 5, are loop-shifted by a shift amount of
0 and 1, respectively. The schedule for SO at this time is
converted from S0 = (4, 4,0) to SO = (4,5 — 1,0). In this
study, the shift amount for one loop shift is limited to 41
or no loop shift, and one of the loop shifts is performed
on all loop variables contained in the target statement.

III. PROPOSED METHOD

Figure 6 shows the overall structure of the present pro-
cessing flow. First, the input code with parallel nested
loops is converted into a polyhedral model. At this time,

1: for(i=0; i<5; i++) 1: for(i=0; i<5; i++)

2: for(j=0; j<5; j++) 2:  for(j=0; j<5; j++)
3 S06,) 3 S0(, )

4 S1G.,j) 4 S1(G, j)

Fig. 4. Before (left) and after (right) loop interchange
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1: for(i=0; i<5; i++) 1: for(i=0; i<5; i++)
2:  for(j=0; j<5; j++) 2. for(j=-1; j<5; j++)
3: S0(i,j) 3: if(j < 4)
4 s16)) 4; S0G,j+ 1)
5: if(j >=0)
6: S1G, j)

Fig. 5. Before (left) and after (right) loop shift
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Fig. 6. Processing flow

the parallel nested loops are converted into a single nested
loop by changing the schedule of the polyhedral model.
Specifically, first, the number of dimensions in the exe-
cution statements in the input program is unified. Here,
the dimension with a fixed value in each schedule is
deleted, and the schedule is changed to one that only has
a loop dimension. After that, the number of dimensions
is unified to the schedule with the largest number of di-
mensions. In addition, by unifying the loop variables in
each schedule, it is converted to a single nested loop. Fi-
nally, a fixed-value dimension for identification is added
to each schedule, and loop fusion is performed. However,
because the conversion here does not account for the de-
pendencies of the internal processing but rather formally
merges the loops, the single nested loop after the conver-
sion does not satisfy the dependencies between the data,
and in many cases it is not optimal. We use PPO, a
reinforcement-learning model, to optimize the loop using
this incomplete single nested loop as the initial state.
From the state given as input, the agent decides on a
loop transformation method for the nested loops and per-
forms schedule transformation. The environment outputs
a new state and reward based on the schedule to which
the transformation has been applied and passes them to
the agent. This series of actions is defined as one step,
and loop interchange or loop shift is performed on one
execution statement for each step. If we assume that the
number of loop variables in the execution statement to
which the transformation is applied is n, then there are

n! ways to swap the loop variables for loop interchange.
For loop shift, since each loop variable is shifted by —1,
0, or 1, there are 3™ possible transformations for a single
execution statement. Therefore, the agent’s action space
A is expressed as follows:

A =lay, a9, - ,ai, (3)
M
i=> (Np!+3¥). (4)

Here, M represents the number of executable statements
contained in the nested loop, and N,, represents the num-
ber of loop variables contained in the mth executable
statement. The state passed to the agent by the envi-
ronment uses features obtained from the abstract syntax
tree (AST). We use 22-dimensional integer features ob-
tained by analyzing the AST and extracting features of
the program. The details are given in Table I. Each fea-
ture listed in this table is derived from an analysis of AST
and serves as a quantitative measure of the program s
structural characteristics. Each entry represents the oc-
currence count of the corresponding component within
the program. These numerical values are utilized to as-
sess the impact of loop optimization and are employed as
input to the reinforcement learning model.

The reward R is set as a ratio of the total number of
execution instructions to the input code. The equation
for remuneration is

unigepoint

R=— (5)

uniqepojntoriginal

where unigepoint is the total number of execution instruc-
tions in the converted code, unigepointorigina is that in
the input code.

In this method, the reward is important because
the reinforcement learning model is trained to output
high-performance loop fusion results. The reward for
learning results that will perform well when hardware-
implemented is calculated using the number of lattice
points in the iteration space after loop transformation.
Specifically, it is defined as the number of all lattice points
in the iteration space after loop transformation that are
executed at least once. Here, we use a figure 7 to ex-
plain the total number of executed instructions. This fig-
ure shows the iteration space after loop transformation of
two execution statements, SO and S1. This loop is a com-
pletely nested loop consisting of an outer loop i and an
inner loop j. Therefore, the number of loop executions is
30 in the left figure 7 and 50 in the right figure 7. In these
two cases, since the loop is fully nested, the latency can
be expressed using the loop count M of loop i, the loop
count N of loop j, the start interval II, and the execution
cycle L of one loop, as follows.

M xIIx(N—=1)xL (6)
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TABLE I
22-DIMENSIONAL INTEGER FEATURES

Features

Number of loops div instructions

Maximum loop depth mod instructions
Branch count and instructions
eq instructions or instructions
It instructions not instructions
le instructions min instructions
gt instructions max instructions
add instructions Function call
sub instructions Function type count
minus instructions ge instructions

mul instructions Basic block count

If L is sufficiently small compared to M and N, the exe-
cution cycle can be approximated as.

M x N xII (7)

In a fully nested loop, the range of values that the loop
variables can take is limited to the number of loop iter-
ations. Therefore, the fewer the number of grid points
in the iteration space after the loop transformation, the
fewer the number of the execution cycle. Thus, the total
number of execution instructions is used as the reward.

The reward is calculated as the ratio of the total num-
ber of execution commands to the input code, and the
negative sign is so that the total number of executed in-
structions in the converted code decreases . However, the
actions taken by the agent do not account for the depen-
dency relationships between executable instructions, and
there are cases where the converted code cannot be exe-
cuted. When such illegal actions are selected, the reward
is set to —10, and learning is performed so that the agent
does not select a conversion that does not satisfy the de-
pendency relationship.
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Fig. 7. Lattice points in iteration space

IV. EXPERIMENTAL RESULTS

In this study, we conducted experiments targeting pro-
grams that perform matrix calculations involving parallel
multiple nested loops. We used Xilinx’s high level syn-
thesis tool Vitis HLS 2020.2, with the target device being
xcvullp-flga2577-1-e. Python 3.11.10 was used for devel-
opment and scheduling implementation, with the libraries
Islpy, gymnasium, and stable baseline3 being utilized.The
reinforcement learning agent performs a single loop trans-
formation decision for the scheduling target loop and re-
ceives the state and reward from the environment based
on the result. This sequence of operations is defined as
one step, and the sequence of steps from the initial state
to the final state is defined as one episode. Exploration is
performed by restarting the loop transformation decision
from the initial state for each episode. In this study, we
set 20 steps as the end state and perform a total of 6,400
episodes of learning.

In the proposed method, we fixed the number of
episodes to 20 steps and trained the program for 6400
episodes. Figure 8 shows the code before optimization and
that after optimization using the proposed method. The
code after optimization converts multiple nested loops
into a single nested loop. Even after conversion, the de-
pendency between executable instructions is satisfied, so
it is an executable code. Figure 9 also shows the average
reward obtained by the proposed method over 10 trials.
As can be seen, the agent is learning to reduce the total
number of instructions executed, as the reward obtained
increases as the episode progresses.

Table II gives the results of high-level synthesis for the
code before optimization, the code optimized using the
proposed method and the code optimized using OLS. As
can be seen, the total number of instructions executed has
decreased by 50% compared to before optimization, and
latency has decreased by 46.61%. This is because parallel
execution has become possible by merging loops. How-
ever, when compared to the optimization results obtained
using OLS, the total number of instructions executed is
the same, yet latency has increased, indicating a perfor-

for (inti=0;i<=8i+=1){
for(intj=0;j<=T;j+=1){

for (inti=0;i<8i++){
for (intj=0;j<8;j++) {

Tlil[j] = 0.0; for (intk=0; k<=7 k+=1) {
for (intk = 0; k < 8 ++k) { if(i<=78&&k==0)
TOI() = TEIG] + alpha * ALl (K] * BIK][j]; L0 = 0.0;
} if (i<=7)(
} TLil[j] += alpha * A[i][k] * BIKI[j];
} if (k ==0) {
DIil[j] *= beta;
for (inti=0;i<8;i++) { }
for (intj=0;)<8; j++) { }
D[i][j] = beta * D[i1[j]; if(i>=1){
for (intk =0; k < 8 ++k) { Dli - 11[j] += T[i - 11[k] * CIkI[j1;
}D[W][j] = DOIGT + T * CIKIT; }]

Fig. 8. Before (left) and after (right) optimization
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Fig. 9. 10-time average of agent’s reward

TABLE II
HIGH-LEVEL SYNTHESIS RESULTS

No fusion Optimized OLS

Total number of execution instructions 1152 576 576
Operating cycle [ns] 10.0 10.0 10.0
Latency [ns] 1697 906 709
DSP 5 13 29
FF 542 3011 3394
LUT 831 2582 3105

mance degradation. One possible factor contributing to
this is the reward setting. In this study, the reward was
set based on the total number of instructions executed,
and the system was trained to reduce this value, aiming
to improve parallelism, i.e., reduce the number of execu-
tion cycles. However, optimization targeting locality was
not performed.In contrast, OLS performs localization op-
timization using Pluto, which is thought to have reduced
memory access and led to shorter latency. Therefore, it is
necessary to perform learning that considers localization
in the future. Specifically, we will aim to further reduce
latency by including rewards that minimize the depen-
dency distance of the outer loop.

V. CONCLUSION

In this study, we described a method for converting a
program into a single nested loop by performing a trans-
formation based on the polyhedral model using reinforce-
ment learning. With this method, we were able to reduce
the total number of instructions executed has decreased
by 50% and latency by approximately 46% by perform-
ing loop fusion on a program with multiple nested loops.
However, when compared to OLS, while the total num-
ber of instructions executed remained the same, latency

increased. This is attributed to the fact that reward set-
tings did not account for locality. Going forward, we will
investigate learning that incorporates locality and opti-
mize other programs for further research.
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