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Abstract—This paper presents an efficient hardware
accelerator for GPT-2 inference on an AMD Alveo
U280 FPGA using High-Level Synthesis (HLS). With
row-wise GEMM scheduling, we optimize GPT-2 com-
ponents via data packing, loop unrolling, and kernel
fusion. Our design achieves a 2.16x speedup over CPU
while consuming only 23% of the power, demonstrat-
ing a scalable and sustainable solution for deploying
Transformer-based models in resource-constrained en-
vironments.

I. INTRODUCTION

Natural language processing (NLP) is a discipline cen-
tered on the computational analysis and representation of
human languages [1]. It encompasses a wide range of ap-
plications, including text generation, classification, sum-
marization, and translation. Earlier NLP models, such
as recurrent neural networks (RNNs) and long short-term
memory (LSTM), struggled with capturing long-range de-
pendencies. This limitation was mitigated by the intro-
duction of the attention mechanism in Transformer archi-
tecture [2].

Transformer-based models have since transformed
NLP [3], enabling the emergence of large language mod-
els (LLMs) such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) [4] and GPT (Genera-
tive Pre-trained Transformers) [5]. These models utilize
self-attention mechanisms to effectively capture intricate
linguistic patterns.

While newer LLMs such as LLaMA [6] offer architec-
tural optimizations, they continue to adhere to the foun-
dational Transformer structure. GPT-2 retains this foun-
dational structure, including multi-head attention and
feedforward layers, making it both representative of con-
temporary LLMs and suitable for hardware exploration.
Its adherence to standard Transformer configurations en-
sures that accelerator designs based on GPT-2 remain
compatible with future model variants. GPT-2 also deliv-
ers strong zero-shot performance [7, 8]. Additionally, its
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open-source availability further justifies its adoption for
research studies.

Despite their effectiveness, Transformer-based LLMs
demand substantial computational and energy resources.
While Graphics Processing Units (GPUs) offer high per-
formance, they incur significant energy costs. Con-
versely, Central Processing Units (CPUs) are more
energy-efficient but often lack the throughput required
for real-time inference [9, 10].

To address both issues, we propose an efficient GPT-
2 inference accelerator implemented on the AMD Alveo
U280 FPGA platform, as FPGAs offer reconfigurabil-
ity, parallelism, and the ability to efficiently execute
the repetitive computation patterns of Transformer-based
networks [11]. To improve productivity, our design lever-
ages High-Level Synthesis (HLS), which enables hard-
ware implementation using high-level languages such as
C/C++. HLS significantly reduces development complex-
ity and accelerates design space exploration, facilitating
rapid implementation and optimization of deep learning
workloads on reconfigurable hardware. Our key contribu-
tions are as follows:

e We design a comprehensive GPT-2 inference accel-
erator that integrates software-level model optimiza-
tion with hardware-level acceleration.

incorporates row-wise GEMM
scheduling, memory layout transformation, HLS
pragmas, URAMe-aligned pack-and-unpack tech-
niques, and kernel-level tiling to maximize compu-
tational throughput and memory efficiency on the
target FPGA architecture.

e Our accelerator

e QOur design achieves a perplexity reduction on the
WikiText-2 dataset from 1.463 to 1.239, a 2.16x
speedup over CPU-based inference, and consumes
only 23% of the power compared to GPU-based exe-
cution. These outcomes highlight the effectiveness of
our approach in improving both model quality and
system-level efficiency for Transformer inference ac-
celeration.

II. BACKGROUND AND RELATED WORKS

FPGAs have become increasingly attractive for deep
learning inference due to their performance and energy
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Fig. 1. Key hardware-level optimization strategies implemented in our FPGA-based GPT-2 accelerator.

efficiency. High-Level Synthesis (HLS) simplifies FPGA
development and has enabled rapid deployment of various
neural network models. Initial efforts in HLS-based accel-
erator design predominantly focused on convolutional and
recurrent, architectures:

e CNN accelerators: Prior works like [12, 13] demon-
strate modular, system-on-chip (SoC)-based CNN
(convolutional neural network) accelerators that
achieved notable speedups through HLS-based design
space exploration and pipeline optimization.

e RNN/LSTM accelerators: Works such as [14, 15]
demonstrated that HLS can simplify the design of re-
current neural network (RNN) and long short-term
memory (LSTM) accelerators, achieving reduced la-
tency and lower development overhead.

Compared to CNNs and RNNs, Transformer-based
models, particularly GPT-2, remain relatively underex-
plored in the HLS/FPGA design landscape. Prior work
such as [16] presented an FPGA design of a scaled down
GPT-2 variant, but the design was limited to a single
decoder layer and a reduced hidden size (N = 128), con-
straining its applicability to realistic use cases.

In contrast, our work targets the full GPT-2 model of
12 layers, a hidden size of N = 768, and multi-head atten-
tion, deployed on an AMD Alveo U280 FPGA using the
Vitis HLS toolchain. To address the architectural and
performance challenges posed by this full-scale deploy-
ment, we introduce several FPGA-specific optimizations,
including data packing, operation tiling, kernel fusion,
and pragma-guided parallelism. Additionally, to enable
a fair evaluation, we develop a baseline GPU implemen-
tation of GPT-2 using a pure C++ framework, allowing
direct comparison of performance and energy consump-
tion across platforms.

III. PROPOSED DESIGN METHODOLOGY

A. Model and Platform Overview

While GPT-2 supports a range of NLP tasks, we focus
specifically on autoregressive text generation, fine-tuning
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Fig. 2. Overall architecture of our design.

the model on the WikiText-2 dataset [17] for this purpose.

The entire inference is partitioned into two functional
components: the host and the kernel, illustrated in Fig. 2.
The host application, running on the CPU, manages the
pre-trained GPT-2 weights in host memory and coordi-
nates data transfers via PCle interface. Based on execu-
tion flow, it loads the required weights into on-chip SRAM
buffers on the FPGA. As highlighted in Fig. 3, orange-
colored modules denote operations executed on the kernel
side, whereas the remaining components are handled by
the host. To further elaborate, Fig. 4 presents the internal
structure of the Transformer layer, which corresponds to
a key component within the overall architecture in Fig. 3.

B. Host-Side Processing Pipeline

B.1. Text Tokenization

Tokenization converts raw text into a sequence of sub-
word tokens. GPT-2 utilizes Byte Pair Encoding (BPE),
a subword-level tokenization scheme that offers a bal-
ance between vocabulary compactness and representa-
tional granularity. BPE enables efficient handling of rare
words and morphological variants by encoding at the sub-
word and character levels.

B.2. Token and Positional Embeddings

Each input token z; is represented by the sum of a
learned token embedding and a positional embedding [16].
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The token embedding matrix E,, € RY*? maps each to-
ken ID to a d-dimensional vector, while the positional
embedding matrix E, € RT*? encodes its sequence posi-
tion. The combined embedding for token x; at position ¢
is:

€ = ew<xi) + ep(i>7 (1)
where e, (x;) = Ey[ID(z;)] and e, (i) = Ep[i].

B.3. Token Sampling Strategy

To generate the next token, we adopt top-k sampling
with k& = 40 from the full vocabulary of 50,257 tokens.
The logits for the top-k tokens are normalized using the
softmax function:

exp(si) (2)
Zje']’ exp(sj) ,
where 7 denotes the top-k token set and s; is the score for

token i. A new token y is sampled from this probability
distribution:

P(y:) =

y ~ P(y:). (3)
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Fig. 4. The model architecture of Transformer layer.

B.4. Text Decoding and Output Reconstruction

Upon generation completion, the output tokens are
passed to a decoding module that performs byte-to-
Unicode mapping to reconstruct readable text. The token
sequence, comprising both input and generated tokens, is
then concatenated to yield the final output string.

C. FPGA Kernel Design and Optimization

C.1. GEMM Architecture and Memory Optimization

General Matrix Multiplication (GEMM), which com-
putes XW + b for input matrix X, weight matrix W, and
bias b, constitutes a core operation in GPT-2 and repre-
sents a primary computational bottleneck. To accelerate
inference, we restructure computation scheduling to favor
linear memory access patterns on the FPGA. Specifically,
we adopt a row-wise update strategy using loop inter-
change, which enhances memory access efficiency.

Given the limited capacity of BRAM and URAM, non-
contiguous access patterns often degrade memory utiliza-
tion. To address this, we flatten multi-dimensional arrays
into one-dimensional representations, improving memory
alignment and access consistency.

Parallelism is further exploited using HLS pipeline
pragmas to achieve an initiation interval (II) of 1. Ad-
ditionally, we employ bind storage pragmas to map
data buffers to dual-port BRAMs, enabling concurrent
read/write operations. These optimizations are consis-
tently applied across all GEMM modules to improve
throughput and resource efficiency on the FPGA.

C.2. Layer Normalization: Fixed-Point Optimization

and Packing

In GPT-2, Layer Normalization (LN) is applied to each
token, with the normalized output scaled and shifted by
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learned parameters. However, computing mean and vari-
ance introduces data dependencies that impact perfor-
mance. Moreover, processing the entire token sequence
simultaneously imposes high memory demands. The fol-
lowing sections describe strategies to optimize memory
utilization and computational efficiency.

Resource Utilization Efficiency To minimize mem-
ory usage, we adopt a token-wise processing strategy.
While BRAM on the Alveo U280 FPGA offers low-latency
access, its limited capacity necessitates the use of URAM,
where each block of which provides 4kx 72 bits. To maxi-
mize memory utilization, we convert floating-point values
to fixed-point format and store them as unsigned integers.
Specifically, three fp24_t values are cast to ap_uint<24>
and packed into a single ap_uint<72> word, which is un-
packed during computation. This efficient representation
aligns with the URAM word size, achieving a 77% reduc-
tion in URAM usage.

Reducing Data Dependency Overhead To allevi-
ate performance bottlenecks from data dependencies, we
employ loop unrolling at each computational stage to
maximize parallelism. Using the #pragma HLS unroll
directive, loops are parallelized effectively in the HLS
toolchain. Combined with the aforementioned data pack-
ing technique, this enables concurrent retrieval and pro-
cessing of multiple values from a single memory location.
These optimizations collectively yield a 6x speedup over
the baseline implementation.

C.3. MLP Acceleration and Memory Reuse Techniques

As illustrated in Fig. 5, the MLP (multilayer percep-
tion) module comprises two linear layers and a GELU
activation. Given the constrained URAM resources, we
implement two key strategies to reduce memory usage:
(1) memory reuse, which provides a 40% savings, and (2)
data packing, which contributes an additional 50% reduc-
tion, resulting in a cumulative 70% decrease.

To mitigate dataflow disruption from data-weight shar-
ing, we apply pipelining and loop unrolling, enhancing
parallelism but with an initial drop in clock frequency.
This reduction is subsequently mitigated by incorporat-
ing tiling and kernel-level parallelism, restoring the orig-
inal clock rate. While marginally slower than the initial
FPGA design, the optimized MLP kernel achieves at least
a 7x speedup over CPU-based inference.

Result of Head; '
Fused MatMul

l

Fig. 6. Concatenation of the results from 12 attention heads
followed by fused linear projection.

C.4. Multi-Head Attention Scheduling and Fusion
Strategies

GPT-2 employs the Multi-Head Attention (MHA)
mechanism consisting of 12 attention heads, typically ex-
ecuted in parallel. However, the limited on-chip memory
of the Alveo U280 FPGA constrains the concurrent stor-
age of all required weights. To address this, we exploit
the independence among attention heads by processing
them sequentially and aggregating the outputs into a sin-
gle matrix before the final fused matrix multiplication, as
illustrated in Fig. 6.

We also fuse consecutive operations, such as reshap-
ing and transposing, which merely reorganize data layout
without altering values. Instead of explicitly performing
these operations, we refine index mappings in subsequent
computations, as illustrated in Fig. 7. This approach
maintains correctness while reducing memory overhead
and preserving linear memory access patterns. As a re-
sult, we enhance MHA efficiency by avoiding unnecessary
data reordering and optimizing computation scheduling.

Further performance gains are achieved by unrolling in-
ner loops using the #pragma HLS unroll directive, en-
abling fine-grained parallelism. This pragma duplicates
loop operations, allowing multiple iterations to execute
concurrently on the hardware.

KV-cache Utilization During the decoding stage of
generative language models, each new token depends on
previously generated ones, necessitating access to all prior
Key and Value (KV) pairs. To avoid redundant compu-
tation, we cache these pairs in external DDR memory.
Although the KV-cache grows with the number of gener-
ated tokens, up to 72MB, we mitigate this by updating
the cache incrementally after computing each attention
head for efficient memory usage.

IV. EXPERIMENTAL RESULTS AND EVALUATION

A. Language Modeling Accuracy (Perplexity)

Our fine-tuned model achieves a significant enhance-
ment in language modeling accuracy on the WikiText-2

-251 -



Fused Linear k
of head;

Fused Linear v
of head;

Fused Linear q
of head;

u * = —
|

Fused MatMul

|

Fig. 7. attention mechanism for a single head. Fused blocks
indicate that operations such as reshape and transpose have been
integrated into the subsequent matrix multiplication.

«—

TABLE I
LANGUAGE MODELING PERPLEXITY ON WIKITEXT-2

Model Perplexity (PPL) |
Original GPT-2 1.463
Our Fine-tuned GPT-2 1.239

test set, reducing perplexity from 1.463 to 1.239. This
indicates increased confidence in token predictions and
superior performance compared to the original GPT-2.
Detailed results are provided in Table I.

B. Inference Latency and Speedup

The proposed FPGA-based accelerator achieves a
2.16x speedup over the CPU while consuming only 50% of
the GPU’s power, highlighting its efficiency for hardware-
accelerated inference. Inference time comparisons are
summarized in Table II.

TABLE II
INFERENCE LATENCY COMPARISON ACROSS DIFFERENT DEVICES

Device Time (s)
CPU (Intel Core 19-14900K) 659.51 (baseline)
GPU (NVIDIA RTX 3060 Laptop) 16.46 (40%)

FPGA (Alveo U280) 305.42 (2.16x)

TABLE III
PowgER CONSUMPTION COMPARISON ACROSS DIFFERENT DEVICES

Device

CPU (Intel Core 19-14900K)
GPU (NVIDIA RTX 3060 Laptop)
FPGA (Alveo U280)

Power (W)

53.02 (100%)
24.54 (46%)
12.32 (23%)

TABLE IV
NORMALIZED PERFORMANCE PER DSP FOR ATTENTION AND MLP
LAYERS
Component Ops Type|Ops Count | DSPs Used | Perf (Ops/s) | Perf per DSP
Attention (Prior Work) 10Ps 4.19 x 10° 960 55.35 0.058
MLP (Prior Work) I0Ps 1.05 x 10¢ 128 27.58 0.215
Attention (Proposed) FLOPs 2.49 x 10% 78 1,725.4 22.12
MLP (Proposed) FLOPs 5.99 x 108 944 14,805 15.68

C. Power Efficiency Analysis

We present a fully self-contained GPT-2 inference ac-
celerator developed in C++ and synthesized for the Alveo
U280 FPGA using HLS. This end-to-end implementation
integrates all model components and optimizations.

The accelerator incorporates sophisticated hardware
optimizations, including data packing, tiling, operation
fusion, and pragma-guided parallelism, to enhance infer-
ence performance and reduce latency. We evaluate its
power and runtime efficiency on the FPGA implementa-
tion against CPU and GPU baselines. Comparative re-
sults are summarized in Table III.

D. Layer-Level Performance Analysis

To compare our design with prior work [16], we evalu-
ate data complexity, latency, and throughput normalized
by DSP utilization for both the attention and MLP com-
ponents. While the baseline targets a reduced GPT-2
configuration with a single decoder layer, single-head at-
tention, and hidden size N = 128, our implementation
supports 12 decoder layers, multi-head attention, and a
hidden size of N = 768. As a result, our design han-
dles a substantially larger computational workload while
delivering superior efficiency.

As summarized in Table IV, the throughput is normal-
ized by the number of DSP blocks to account for hard-
ware resource discrepancies. Our attention layer pro-
cesses 2.49 x 108 FLOPs in 144,600 ms using only 78
DSPs, resulting in 22.12 FLOPs/s/DSP, approximately
381x higher than the 0.058 IOPs/s/DSP achieved by the
baseline. Similarly, the MLP layer executes 5.99 x 108
FLOPs in 40,477 ms using 944 DSPs, achieving 15.68
FLOPs/s/DSP, a 73x improvement over the prior de-
sign’s 0.215 IOPs/s/DSP. These results highlight not only
enhanced raw throughput but also significantly improved
resource efficiency.
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Fig. 8. System-level demonstration of FPGA-accelerated GPT-2
inference, showing interaction between text input, host, and
FPGA.

E. System Demonstration and Real-Time Inference

To demonstrate the practical viability of our design,
we developed a comprehensive end-to-end demo system.
As illustrated in Fig. 8, the system integrates the FPGA-
accelerated GPT-2 model with a host-side application ca-
pable of processing text input and displaying inference
results in real time.

V. CONCLUSION

This paper presents an end-to-end GPT-2 inference ac-
celerator using HLS on the AMD Alveo U280 FPGA.
Our design addresses the dual challenges of high energy
consumption associated with GPUs and limited computa-
tional throughput of CPUs. By leveraging the parallelism
and configurability of FPGAs, our solution demonstrates
the viability of efficient hardware acceleration for large
language model inference. Experimental results validate
the effectiveness of our approach. The proposed design
achieves a 2.17x speedup over CPU inference and con-
sumes only 50% of the power required by GPU-based exe-
cution, offering a favorable trade-off between performance
and energy efficiency. Furthermore, the model improves
inference quality, reducing perplexity on the WikiText-
2 dataset from 1.463 to 1.239. These results highlight
the effectiveness of our approach in delivering scalable,
energy-efficient solutions for Transformer-based models.
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