
Binary Synthesis from ARM Machine Code Using a General-Purpose
High-Level Synthesis System

Yuga SUGIMOTO † Nagisa ISHIURA ††

† Graduate School of Science and Technology †† School of Engineering
Kwansei Gakuin University

1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, JAPAN

Abstract—This paper presents the implementation

of a binary synthesis system that utilizes a general-

purpose high-level synthesis (HLS) system as a back-

end, starting from ARM Thumb machine code. Bi-

nary synthesis is a technique that generates a hard-

ware design description functionally equivalent to the

CPU executing the original machine code program.

However, implementing such a system for each in-

struction set architecture incurs a high development

cost. Nakamichi has proposed a method for easily

implementing binary synthesis systems by convert-

ing machine code programs into C programs, which

are then synthesized into hardware using a general-

purpose HLS system. Based on this approach, we

implement a binary synthesis system that generates

hardware design descriptions from machine code pro-

grams using the ARMv6 instruction set. ARMv6 in-

cludes features such as program counter-relative ad-

dressing for immediate load instructions and condi-

tional execution based on flags. Additionally, divi-

sion and modulo operations are typically handled by

runtime libraries, which increase circuit size and ex-

ecution time; to address this, we convert runtime li-

brary calls directly into division/modulo instructions.

The proposed binary synthesis system is implemented

in Python. Experimental results using machine code

programs obtained from several C programs show

that, compared to hardware generated directly from

the original C programs, the circuit size increased by

a factor of approximately 1.3 to 5.5, while the delay

remained nearly the same.

I. Introduction

In recent years, embedded systems are expected to de-
liver numerous functions and high performance, while
also facing strict constraints such as miniaturization and
power efficiency. When these demands cannot be met
through software implementation alone, one possible ap-
proach is to migrate part or all of the system to hardware.
As a means of facilitating efficient migration from soft-

ware to hardware, high-level synthesis (HLS) techniques
have been proposed, which generate hardware design de-

scriptions from programs written in C or other high-level
languages [1]. However, programs that include special in-
structions, such as interrupt handlers, are often written
in assembly or using inline assembly, making it difficult
to directly apply HLS to such software.

Binary synthesis is a technique that generates hard-
ware designs from machine code programs. For example,
hardware synthesis from MIPS, ARM, and MicroBlaze
machine codes has been demonstrated in [2], from MIPS
in [3], and from RISC-V in [4]. Moreover, [5, 6] propose
binary synthesis methods that target programs including
MIPS interrupt handlers.

Binary synthesis offers advantages such as the ability to
synthesize special instructions not directly representable
in programming languages and memory accesses through
pointers or global variables without code modification.
Additionally, hardware synthesis helps prevent code or
algorithm theft. On the other hand, binary synthesis sys-
tems must be implemented separately for each instruction
set, which increases development cost. Even if existing
HLS tools can be reused, analyzing data flow and control
in the machine code program may still be necessary.

To address this issue, Nakamichi et al. have proposed a
method for easily implementing binary synthesis systems
using general-purpose HLS tools [7]. This method gen-
erates a high-level language program representing the be-
havior of the given machine code program and synthesizes
it into hardware using commercial HLS tools. Nakamichi
implemented a binary synthesis system for 32-bit RISC-V
(RV32IM) machine code based on this method.

In this paper, we implement a binary synthesizer tar-
geting ARMv6 Cortex-M1 machine code programs based
on Nakamichi’s method. In contrast to RISC-V, ARM
presents two notable differences: (1) constants for imme-
diate load instructions are not embedded in the instruc-
tion itself but are located elsewhere in the program and
accessed relative to the program counter, and (2) instruc-
tions may be executed conditionally based on status flags.
Moreover, since division and remainder operations exe-
cuted by the runtime library become significantly ineffi-
cient when directly implemented in hardware, we also pro-
pose a method to convert such function calls into equiva-
lent C code performing the division or remainder compu-

R1-5 SASIMI 2025 Proceedings

- 26 -

tation.
We conducted evaluation experiments using ARM ma-

chine code programs obtained by compiling C programs.
Compared to circuits synthesized directly from the orig-
inal C programs by HLS, the proposed system produced
circuits with a hardware size increase of approximately
1.3 to 5.5 times, while maintaining nearly the same criti-
cal path delay.
The remainder of this paper is organized as follows.

Section 2 reviews the proposed binary synthesis approach
using a general-purpose high-level synthesizer as the back-
end. Section 3 describes the technical details of applying
the method to the ARM Thumb instruction set. Section
4 presents the implementation of the binary synthesizer
and compares its performance with that of high-level syn-
thesis from C programs. Finally, Section 5 concludes the
paper and outlines future work.

II. Binary Synthesis Using General-Purpose
High-Level Synthesis Systems

A. High-level synthesis and binary synthesis

The general flow of high-level synthesis is shown in
Fig. 1. The input behavioral description written in a
programming language is converted into an intermediate
representation called a CDFG (control dataflow graph).
Then, scheduling determines the execution timing of op-
erations, and binding allocates operations and values to
functional units and registers, respectively, finally gener-
ating a register-transfer level hardware description.
Binary synthesis differs from high-level synthesis only

in the front-end; once the system analyzes machine code
programs to generate a CDFG, the subsequent process is
the same as in high-level synthesis.
Since most high-level synthesis systems do not accept

CDFG as their input interface, the entire binary synthesis
system must be implemented. If existing high-level syn-
thesis or binary synthesis systems can be reused, or if an
open-source HLS system is available, only the front-end
needs to be implemented. Nevertheless, since generating
a CDFG usually requires data-flow and control-flow anal-
ysis, developing a front-end for machine code programs
involves significant implementation effort.

B. Binary synthesis using general-purpose high-level
synthesis systems

As a simpler method for implementing binary synthesis
systems, Nakamichi et al. proposed a method that uti-
lizes a high-level synthesis system as a backend [7]. This
method converts the given machine code program into a
C program, which is then synthesized into hardware using
an off-the-shelf HLS tool.
The flow of this process is shown in Fig. 2. The input

is a linked executable machine code program. The disas-
sembled assembly code is converted into a synthesizable

High-Level Synthesis

C Program

Binary Synthesis

Machine Code

Program

Analysis

CDFG

Scheduling

Binding

HDL Generation

Analysis

HDL

Fig. 1. Flow of high-level synthesis/binary synthesis [7]

C program that achieves the same functionality as the
given program. As described later, this transformation is
not a decompilation, but rather a method of converting
each instruction one-by-one into corresponding C code.
Because dataflow and control analysis are not required,
development cost is reduced. Any HLS system that ac-
cepts C code as input can be used, including not only
pre-developed systems but also commercial ones, though
some system-specific adjustments may be needed. In ad-
dition, one can benefit from on-going improvements in the
performance of HLS tools.

Machine Code

Program

Disassembly

Assembly Code

C Conversion

General-Purpose

High-Level

Synthesis System

Library

C Program

Hardware Design

Descrip�on

C ProgramAssembly Code

Assembler Compiler

Linker

Fig. 2. Flow of binary synthesis proposed in [7]

As shown in Fig. 3, the binary synthesis presented in [7]
converts a program stored in instruction memory, along
with the CPU that executes it and other components such
as data memory, into a single hardware module that is
functionally equivalent to the original system.
Regarding the structure of the C program, one C func-

tion is generated for each assembly program in [7], as
shown in Fig. 41. The generated function consists of a
part that declares registers and memory as local variables

1This is because the HLS tool used in the implementation syn-
thesizes one function into one hardware module

- 27 -

CPU

IM DM

HW

DM

bin
prog

Fig. 3. Binary synthesis in [7]

!!!

"#$%&$'(

)*******(+%,,- ./&01./&01*

)******2(+34- #51*67889

)******)(+0&- #51#51*

)******9(+34- %*1*62

)*****:*(+%,,- ;51%*12

)*****:2(+34- $*1*6)****

!!!

!!!

<0-,+84=9><0-,?+@

AA+>:?+B/=/&%3+54&50#/+&/;-#$/&#

#$%$-9+4-=CDE+./&0+F+*G

#$%$-9+4-=CDE+&%G

#$%$-9+4-=CDE+#5G

#$%$-9+4-=CDE+;5G

#$%$-9+4-=CDE+$5G

!!!

AA+>D?+H/I0&J

!!!

AA+>C?+K=#$&49$-0=#

#$%&$(

#5 F+*67889+""+:DG

#5 F+#5 L+>*?G

%*+F+*62+""+:DG

;5 F+%*+M+>2?G

$*+F+*6)****+""+:DG

!!!

N

Fig. 4. Structure of generated C program in [7]

(sections (1) and (2) in the figure), and a part that con-
sists of C code fragments each of which is converted from
an instruction line (section (3) in the figure). In this ex-
ample, the 32-bit integer registers in RISC-V are declared
as 32-bit unsigned integer variables as shown in (1).

Examples of converting RISC-V instructions into C
code are shown in TABLE I . For instance, the addi-
tion instruction add a5,a4,a5 is converted into the C
statement a5 = a4 + a5;.

TABLE I
Examples of RISC-V Instruction Conversion in [7]

Instruction C Program
add a5,a4,a5 a5 = a4 + a5;

addi sp,sp,-32 sp = sp + (-32);

and a4,a4,a5 a5 = a4 & a5;

sll a5,a5,a0 a5 = a5 << (a0 & 31);

sra a6,a4,a6 a6 = SINT32(a4) >> (a6 & 31);

srl a7,a4,a7 a7 = a4 >> (a7 & 31);

Memory is represented as arrays within the function
(Fig. 6), whose handling is shown in Fig. 5. The heap
(global variables) is assumed to use GN words, and the

stack (local variables) LN words. Macros like those in
Fig. 7 convert memory addresses to array indices; the in-
dex for address a is given by MA(a).

GN

LN

M3 M2 M1 M0
MEM

GN

LN

Heap Area

Stack Area

GB

LB

Fig. 5. Memory handling in [7]

static uint8 t MEM 3[GN+LN];

static uint8 t MEM 2[GN+LN];

static uint8 t MEM 1[GN+LN];

static uint8 t MEM 0[GN+LN];

Fig. 6. Declaration of memory array variables in [7]

#define LB 0x7ffbfec

#define GB 0xc0000000

#define MA G(a) ((((a) - GB) / 4))

#define MA L(a) ((((a) - LB) / 4) + GN)

#define MA(a) (((a) >= GB) ? MA G(a) : MA L(a))

Fig. 7. Converting memory address to index in [7]

Branch instructions are implemented by attaching la-
bels to the C code at target addresses and using goto.
For register jumps, all possible targets and corresponding
labels are enumerated, and a switch statement performs
the jump.

III. Instruction Conversion Method for ARM

In this paper, we present an implementation of a binary
synthesis system from ARM machine code based on the
method proposed in [7]. Our target is the Cortex-M1
(Thumb of ARMv6).
The method of converting machine code programs into

C programs is basically the same as for 32-bit RISC-V
(RV32IM), but several modifications are made for ARM
Thumb instructions. In Thumb, immediate load instruc-
tions use PC-relative addressing, so it is necessary to ex-
tract the corresponding values from the machine code.
Moreover, since ARM allows conditional execution using
a flag register, the conversion must handle this behav-
ior appropriately. Additionally, in Cortex-M1, division

- 28 -

and modulo operations are executed through runtime li-
braries. Directly converting these library calls into C and
applying high-level synthesis results in significant ineffi-
ciency; therefore, we convert these calls directly into C
code that performs division or modulo operations directly.

A. Conversion of basic Thumb instructions

As in [7], 32-bit general-purpose registers are declared
as 32-bit unsigned integer local variables, and memory
is handled as local arrays. Examples of basic Thumb
instruction conversions are shown in TABLE ?? . For
example, the addition instruction add r0,r1 is converted
into the C statement r0 = r0 + r1;. In Thumb, instruc-
tions with the same name may have different numbers
of operands, so conversions are made accordingly. The
conversion of load/store instructions (ldr and str) and
branch instructions (b.n) is similar to that of RISC-V.

TABLE II
Conversion of basic Thumb instructions

Instruction C Program
add r0,r1 r0 = r0 + r1;

add r0,r1,r2 r0 = r1 + r2;

sub r3,#1 r3 = r3 - 1;

sub r3,r4,#1 r3 = r4 - 1;

mov r3,r1 r3 = r1;

neg r3,r3 r3 = -r3;

lsl r2,r2,#2 r2 = r2 << (2 & 31);

asr r2,r3,#1 r2 = (int32 t)r3 >> (1 & 31);

ldr r4,[r6,#4] r4 = (MEM 3[MA(r6+4)] << 24)

+ (MEM 2[MA(r6+4)] << 16)

+ (MEM 1[MA(r6+4)] << 8)

+ (MEM 0[MA(r6+4)]);

str r3,[r6,#4] MEM 3[MA(r6+4)] = (r3 >> 24);

MEM 2[MA(r6+4)] = (r3 >> 16);

MEM 1[MA(r6+4)] = (r3 >> 8);

MEM 0[MA(r6+4)] = (r3);

b.n 80000182 goto L80000182;

B. Conversion of program counter-relative load instruc-
tions

Since Thumb instructions are only 16 bits in length,
there is insufficient space within the instruction to ac-
commodate an immediate field large enough to load con-
stants into registers. Therefore, the Thumb instruction
set adopts a scheme where constants are placed within the
program, and loaded into registers using program counter-
relative load instructions (ldr).
For example, in Fig. 8, the instruction ldr r6, [pc,

#44] uses program counter-relative addressing to load
a 32-bit constant value 0xc0000000, located at address
0x80000194 in instruction memory, into register r6. This
instruction needs to be converted into C code like r6 =

0xc0000000;. However, two issues arise during this con-
version.
The first issue is that the runtime address obtained by

adding an offset to the value of pc may fall outside the

main:;

…

/* 80000166 ldr */

r6 = 0xc0000000;

…

80000164 <main>:

…

80000166: 4e0b ldr r6, [pc, #44]

…

80000194: c0000000 andgt r0, r0, r0

…

pc + 44 = 80000194

Fig. 8. Constant value reference via PC-relative addressing

binary range converted into an assembly program via dis-
assembly. The second issue is that when the address falls
within range, the data at that address may have been dis-
assembled into unrelated instructions, which can result in
invalid code.

In this paper, we resolve the first issue by extracting
the constant data not from the assembly code, but from
a separately dumped machine code file. The second issue
is addressed by setting flags on instructions located at
addresses identified as data in the assembly code, thereby
excluding them from conversion into C code.

It should be noted that when calculating program
counter-relative addresses, it is necessary to consider
alignment to word boundaries and the data endianness.

C. Handing of condition flags

Unlike MIPS or RISC-V, ARM has mechanisms for set-
ting flags through instructions and for conditional execu-
tion of instructions based on those flags. The flags include
four types: N, Z, C, and V, which are set when the re-
sult of an instruction is negative, zero, when an unsigned
overflow occurs, or when a signed overflow occurs, respec-
tively.

In our approach, flags are declared as local variables
just like general-purpose registers. Instructions that set
flags are converted into C code that performs the compu-
tation and updates the flags according to their definitions.
Conditionally executed instructions are converted into if-
statements that reference these flags.

Fig. 9 shows examples of conversions for the addition
instruction adds, which updates flags, and for conditional
branching based on flag values. After executing the addi-
tion r1 = r1 + r2, the values of the four flags are com-
puted. The variable r1 org stores the original value of r1
prior to the update, which is needed to determine over-
flow. The bne.n instruction branches when the Z flag is
cleared, and this is represented using an if-statement.

Although computing flags that are not referenced by
subsequent instructions is redundant, such calculations
are typically removed by general-purpose high-level syn-
thesis tools through dead code elimination, which is a
basic optimization performed by compilers.

- 29 -

Assembly C Program
main:;
⋯
/* 80000182 adds */
r1_org = r1;
r1 = r1 + r2;

n = (r1 >> 31);
z = (r1 == 0);
c = (r1 < r1_org);
v = ((r1_org > 0) && (r2 > 0)
&& (r1 < 0)) || ((r1_org < 0)
&& (r2 < 0) && (r1 > 0)) ;

/* 80000184 bne.n */
if (z == 0) {

goto L80000176;
}
⋯

80000164 <main>:
⋯
80000182: adds r1, r2

80000184: bne.n 80000176

⋯

Fig. 9. Flag update and reference

D. Conversion of runtime library calls for division/mod-
ulo operations

Since Cortex-M1 does not have divison/modulo instruc-
tions, these computations are carried out via calls to run-
time libraries. In our method, although it is possible
to synthesize hardware from machine code that includes
linked runtime libraries, the division/modulo libraries in-
volve a large number of both static and dynamic instruc-
tions. As a result, the generated hardware circuit size
and the number of execution cycles tend to increase sig-
nificantly.
To address this, our method directly converts runtime

library calls for these operations into corresponding C
code that performs division and modulo operations.
For example, in the assembly code shown in

Fig. 10, the code starting at address 80000140 labeled
< aeabi idivmod> corresponds to the division/modulo
runtime library. By setting the dividend in r0 and the
divisor in r1, and invoking the runtime library with the
instruction bl 80000140 at address 8000017a, the quo-
tient is returned in r0 and the remainder in r1. In our
approach, the bl 80000140 instruction is converted into
C code that directly performs division and modulo op-
erations. Additionally, the runtime library code itself is
excluded from the conversion and removed.
This transformation is expected to significantly reduce

both the size of the synthesized hardware circuit and the
number of execution cycles.

IV. Implementation and Experiment

We have implemented a binary synthesis system that
converts ARM Thumb machine code programs into hard-
ware based on the proposed method.
We used ‘arm-none-eabi-objdump’ as the disassembler,

and implemented the system that converts the assem-
bly code into C programs using Python (version 3.11.7).
The instruction sequence of the assembly program was

⋯

⋯
main:;
⋯
/* 8000017a bl */
r0_org = r0;

r0 = r0_org / r1;
r1 = r0_org % r1;
⋯

Assembly C Program

⋯
80000140 <__aeabi_idivmod>:
80000140: e3510000 cmp r1, #0
80000144: 0afffff9 beq 80000130
80000148: e92d4003 push r0, r1, lr
8000014c: ebffffb3 bl 80000020
80000150: e8bd4006 pop r1, r2, lr
80000154: e0030092 mul r3, r2, r0
80000158: e0411003 sub r1, r1, r3
8000015c: e12fff1e bx lr
⋯
80000164 <main>:
⋯
8000017a: f7ff ffe1 bl 80000140 <__aeabi_idivmod>

⋯

Fig. 10. Conversion of runtime library calls for division/modulo

extracted from the ‘.text’ section, while constant data re-
ferred to by PC-relative ldr instructions was extracted
separately from the ‘.data’ section. Since immediate val-
ues extracted from machine code are stored in little-
endian format, they were converted to big-endian during
this process.

The machine code programs used in the experiments
were generated by compiling C programs. We used ‘gcc-
11.4.0’ targeting ‘arm-none-eabi’, with optimization op-
tion ‘-O3.’ For high-level synthesis as the backend, we
used Xilinx Vitis HLS (version 2024.1.2), targeting the
Xilinx Artix-7 device.

The results are shown in TABLE III . The evalu-
ated programs are as follows: “prime”: primality testing,
“heap sort”: heap sort, “binary search”: binary search
on an integer array, “linear search”: linear search, and
“best first search”: best-first search.

The “proposed binary synthesis” column shows the re-
sults of our binary synthesis approach using ARM ma-
chine code, while “high-level synthesis” shows the results
obtained by synthesizing the original C programs directly
as a reference. (The purpose of this comparison is to
evaluate the overhead incurred by the proposed binary
synthesis system, if any, in comparison to high-level syn-
thesis from a C program. It should be noted that the goal
of this paper is not to develop a binary synthesis system
that outperforms high-level synthesis.)

“#insn” indicates the number of static instructions in
the assembly program, “#LUT” is the number of lookup
tables used, “#cycle” is the number of execution cycles,
and “delay” is the critical path delay in nanoseconds. Val-
ues in parentheses indicate the ratio relative to the “high-
level synthesis” result, which is normalized to 1.00.

The execution results of the circuits generated by bi-
nary synthesis matched those of the high-level synthesis
exactly. Compared to high-level synthesis, the binary syn-
thesis circuits required: 1.29 to 8.66 times more LUTs and
1.29 to 3.83 times more execution cycles. The critical path

- 30 -

TABLE III
Synthesis result

program proposed binary synthesis high-level synthesis
#insn #LUT #cycle delay [ns] #LUT #cycle delay [ns]

prime 29 2,118 (1.29) 270 (1.29) 6.859 (0.98) 1,637 210 6.979
heap sort 165 4,074 (5.47) 58,066 (3.65) 7.176 (0.99) 745 15,911 7.240
binary search 38 851 (2.55) 92 (3.83) 7.043 (1.04) 334 24 6.755
linear search 29 537 (8.66) 123 (3.73) 7.046 (1.18) 62 33 5.959
best first search 49 1,103 (5.52) 163 (2.96) 7.043 (1.00) 200 55 7.014

Synthesizer: Xilinx Vitis HLS (2024.1.2), Target: Xilinx Artix-7

delay remained nearly the same.
Because binary synthesis lacks structural information

from source programs (unlike high-level synthesis), the re-
sulting hardware is generally less efficient. ARM Thumb
programs also include more instructions, affecting cir-
cuit size and execution cycles. These performance is-
sues depend heavily on the backend high-level synthe-
sis tool’s optimization capabilities, and generating more
optimization-friendly C code could help improve results.

V. Conclusion

In this paper, we presented an implementation of a bi-
nary synthesis system from ARM machine code that uti-
lizes a general-purpose high-level synthesis (HLS) system
as its backend. The key technical contributions include:
PC-relative immediate value loading, flag updates and
conditional execution handling, and direct conversion of
division/modulo runtime library calls into corresponding
arithmetic operations in C.
This method enables the implementation of a binary

synthesizer at low cost. It is especially useful for hardware
synthesis of ARM machine code in cases where no source
code in a high-level language exists, when the program
includes inline assembly, or when there is a need to protect
the machine code program. Another advantage of this
approach is that the performance of the binary synthesizer
can benefit from ongoing improvements to the high-level
synthesizer used as the backend.
The size of the circuits and the number of execution cy-

cles generated by the binary synthesizer using this method
tend to be larger than those obtained by directly perform-
ing high-level synthesis from a C program (if such a pro-
gram exists). One possible approach to mitigate this issue
is to convert the machine code program into a C program
that is more suitable for optimization by the high-level
synthesis system.
Future work also includes supporting 32-bit ARM and

SIMD instructions.

Acknowledgements

Authors would like to express their appreciation to
Dr. Hiroyuki Kanbara of ASTEM/RI, Prof. Hiroyuki
Tomiyama of Ritsumeikan University, and Mr. Takayuki
Nakatani (formerly with Ritsumeikan University) for their
discussion and valuable comments. We would also like to

thank to the members of Ishiura Lab. of Kwansei Gakuin
University. This work was partly supported by JSPS
KAKENHI under Grant No. 24K14885.

References

[1] D. D. Gajski, N. D. Dutt, A. C-H. Wu and S. Y-L. Lin: High
―Level Synthesis: Introduction to Chip and System Design,
Springer (2012).

[2] G. Stitt and F. Vahid: “Binary synthesis,” ACM Trans. Design
Automation of Electronic Systems (TODAES), Vol. 12, No. 3,
pp. 1–30 (Aug. 2008).

[3] N. Ishiura, H. Kanbara and H. Tomiyama: “ACAP: Binary syn-
thesizer based on MIPS object codes,” in Proc. International
Technical Conf. on Circuit/Systems, Computers and Commu-
nications (ITC-CSCC 2014), pp. 725–728 (July 2014).

[4] S. Hamana and N. Ishiura: “Binary synthesis from RISC-V
executables,” in Proc. Workshop on Synthesis and System In-
tegration of Mixed Information Technologies (SASIMI 2019),
pp. 227–228 (Oct. 2019).

[5] N. Ito, N. Ishiura, H. Tomiyama, and H. Kanbara: “High-level
synthesis from programs with external interrupt handling,” in
Proc. Workshop on Synthesis and System Integration of Mixed
Information Technologies (SASIMI 2015), pp. 10–15 (Mar.
2015).

[6] N. Ito, Y. Oosako, N. Ishiura, H. Kanbara and H. Tomiyama:
“Binary synthesis implementing external interrupt handler as
independent module,” in Proc. International Symposium on
Rapid System Prototyping (RSP 2017), pp. 92–98 (Oct. 2017).

[7] R. Nakamichi, S. Kishimoto, N. Ishiura, and T. Kondo: “Bi-
nary synthesis using high-level synthesizer as its back-end,” in
Proc. Workshop on Synthesis and System Integration of Mixed
Information Technologies (SASIMI 2022), pp. 121–126 (Oct.
2022).

- 31 -

