R4-7

SASIMI 2025 Proceedings

A design hackathon to bridge AI and hardware

Hideharu AMANO
Mizuho NITAMI
Jiawei YU
Atsutake KOSUGE

Takao GOTO
Yuki MITARAI
Yuxuan PAN
Makoto IKEDA

System Design Lab, Graduate School of Engineerig, The University of Tokyo

Abstract—

This paper introduces a design hackathon approach
and case study that allows beginners in hardware de-
sign to compete in terms of performance and accu-
racy using YOLO, a representative object detection
method. Rather than optimizing the hardware itself,
the focus is on employing system-level optimization
techniques on a low-cost KV260 board. Even students
from non-technical backgrounds were able to achieve
several-fold performance improvements with the help
of tools like ChatGPT.

I. INTRODUCTION

The semiconductor industry has recently come into the
spotlight due to massive investments in fabs, but it still
suffers from a shortage of skilled personnel. The semi-
conductor field requires a broad range of knowledge and
experience, including system design, circuit design, phys-
ical design, and manufacturing processes, making it dif-
ficult to develop talent in a short period of time. Above
all, the most important task is to increase the number of
students.

The ”Agile-X: Platform for the Democratization of
Innovative Semiconductor Technologies” project [1] was
launched in 2022 as part of the Ministry of Education,
Culture, Sports, Science and Technology’s initiative to
establish the next-generation integrated circuit center (X-
NICS). As part of its efforts to increase the semiconductor
design population by a factor of ten, the project carries
out a variety of educational and research activities, in-
cluding the organization of design hackathons.

In this hackathon, participants implement image recog-
nition—one of the most common applications of AI—on
FPGA (Field Programmable Gate Array) boards. This
allows them to understand that such processing is exe-
cuted on semiconductor chips, and to explore methods for
improving both performance and accuracy. Since 2023,
this approach has been adopted as a graduate-level course
at the University of Tokyo. It has since been refined
and expanded, with supporting materials developed in the
form of a wiki and blog, and is now being made available
to the broader public.

Student experiments using FPGAs are widely utilized

in hardware and system education because they are easy
to set up and have minimal running costs. However,
many of these experiments require students to understand
HLS (High-Level Synthesis) or HDL (Hardware Descrip-
tion Language) and directly use FPGA design tools such
as Vitis and Vivado. In such cases, implementing Al ap-
plications like image recognition demands a substantial
amount of prerequisite knowledge.

To address this, our hackathon used the KV260 board
while abstracting away the standard FPGA design pro-
cesses. Participants were instead encouraged to com-
pete in terms of processing speed and recognition accu-
racy through system-level innovations. As a result, even
students without prior design experience, including those
from non-technical (liberal arts) backgrounds, achieved
more than a twofold improvement in performance.

The rest of the paper is organized as follows: Section 2
surveys conventional FPGA design contests and what’s
new in our trial. Section 3 describes the flow of our
hackathon, and Section 4 summarizes the trial of 2024.
Section 5 is for conclusions and ongoing activities.

II. SURVEY

A. Al Edge Contest

The AI Edge Contest, organized by Japan’s Ministry
of Economy, Trade and Industry (METTI), focuses on im-
age recognition algorithms. The second contest in this
series served as a reference when we launched our own
hackathon [2]. However, with each iteration, the chal-
lenges have become increasingly advanced. The theme of
the most recent sixth contest involved developing an algo-
rithm for 3D object detection using both forward-facing
vehicle images and omnidirectional point cloud data.

A distinctive feature of this contest is the requirement
to use RISC-V for part of the actual processing. In ad-
dition to the Ultra96 board, any FPGA board or RISC-
V-equipped board is eligible. Participants are allowed to
implement on soft-core RISC-V processors on PolarFire
or Ultra96 boards, or even connect a standalone RISC-V
board to an FPGA board.

The contest provides forward-facing vehicle image data,
full-surround point cloud data, and labeled 3D bounding

-278 -

boxes with object categories. From this data, the goal is
to recognize passenger vehicles and pedestrians.

Teams of up to five members participate by submitting
their source code, area report, implementation approach,
and performance results. Award-winning teams are se-
lected through a judging process. The contest is well-
sponsored, with prize money of 1 million yen, 600,000
yen, and 300,000 yen awarded to the top three teams, re-
spectively. In the 2023 contest, there were 41 entries and
271 participants.

B. FPGA Design Contest — Aiso Cup

The FPGA Design Contest (Aiso Cup) is organized by
the Technical Committee on Reconfigurable Systems of
the Institute of Electronics, Information and Communi-
cation Engineers (IEICE). Both an international and a do-
mestic contest are held under the same theme. While the
international contest was traditionally part of the ICFPT
event, in 2024 it will be held in conjunction with ICCE
in Las Vegas, and the same arrangement is planned for
2025. The “Aiso Cup” title applies only to the domestic
contest.

The domestic contest serves as a preparatory stage for
the international competition; therefore, it is not being
held in the current year. Initially, the contest theme in-
volved connecting FPGA boards via serial cables to com-
pete in hardware-based game Al battles. More recently,
the format has shifted to using small autonomous vehi-
cles equipped with FPGAs, which navigate a designated
course using only camera input. Tasks include obstacle
avoidance, traffic signal recognition, and pedestrian pro-
tection.

In this contest, while there are no restrictions on the
type of FPGA used, physical size limitations of the vehi-
cle effectively limit the hardware to smaller models. Al-
though the vehicle’s capabilities do influence the outcome,
the contest is primarily focused on FPGA design, and sup-
port such as vehicle lending is provided.

The contest takes place over two days, and participants
must bring their vehicles to the event in person. Con-
trolling the vehicle solely through camera input, without
any additional sensors, presents a significant challenge.
However, in recent years, some teams have successfully
completed all tasks. Most participants are university lab
teams, and there is no limit on the number of participants
per team. Typically, around ten teams take part, though
participation has become somewhat fixed in recent years.
Additionally, the operational burden of running the con-
test largely falls on Okayama University.

C. Intel InnovateFPGA Design Contest

The Intel InnovateFPGA Design Contest is an FPGA
design competition hosted by Intel, branded as a global
design contest aimed at inspiring teams to develop FPGA-
based projects with the theme of sustainability [3].

Projects that have been awarded include large-scale initia-
tives such as coral reef restoration and cloud-based man-
agement of solar converters.

A key component of the contest is the integration of
cloud and edge computing using the FPGA Cloud Con-
nectivity Kit, which is certified for Microsoft Azure and
enables cloud connectivity. Although the FPGA itself
(Cyclone series) is not particularly powerful, heavy pro-
cessing is handled in the cloud.

This is a large-scale contest with many sponsors and a
total of 260 participants. It is a highly unique competition
with a strong focus on cloud-edge collaboration, but it has
only been held once, in 2022.

III. OUR DESIGN HACKATHON

In addition to the FPGA design contests introduced in
Section 2, many universities also conduct FPGA design
in a hackathon format as part of student laboratory exer-
cises. However, most of these are integrated with courses
on logic circuit design or computer architecture, and they
focus on evaluating students’ hardware design skills or
system design capabilities, including processors. While
effective for technical training, these approaches often re-
quire substantial prerequisite knowledge and are not well
suited for helping students who are interested in Al un-
derstand that “Al is fundamentally supported by semi-
conductor chips.”

Moreover, extending these methods to reach engaging
AT applications raises the barrier even higher.

To address this, we employed Vitis-Al on the KV260
SoM to abstract away the hardware design aspect of FP-
GAs, allowing students to implement practical, real-world
applications on FPGAs. In this hackathon, participants
were challenged to improve performance and accuracy
based on their creativity, without making any modifica-
tions to the underlying FPGA hardware. The methodol-
ogy is described in detail below.

A. KV260 SoM Board and Vitis-AI

The KV260 is one of the Kria K26 series and is a com-
pact board equipped with a Zynq UltraScale+ device [4].
It features rich I/O options and 4GB of DRAM, and sup-
ports secure communication with Windows PCs via TPM
2.0 (Trusted Platform Module). It includes slots for both
primary boot memory and a secondary boot SSD.

The KV260 is referred to as a SoM (System-on-
Module), and its design environment is built to treat the
entire board as a complete system. As a result, detailed
information such as the exact chip model of the Zynq
UltraScale+ and its pin assignments is not publicly dis-
closed.

Design information for the board is integrated into Xil-
inx’s design tools, Vitis and Vivado. In other words, the
FPGA on the KV260 is not used in isolation, but is man-
aged as part of the entire board through these tools.

-279 -

Zynq Ultrascale+

Serial I/0 Ethernet '

SSD ! H External
data files . AR P . DRAM
' ! 4GB

AXI bus AXI bus ' PS
: !

Controller '

Instruction
| Scheduler

Fig. 1. Hardware Structure used in Vitis Al

Vitis-Al is an integrated AI development environment
provided by AMD/Xilinx. It includes a DPU (Deep
Learning Processor Unit), which performs convolution op-
erations at high speed, and its associated interfaces, which
are implemented as hardware in the PL (Programmable
Logic) part of the Zynq device.

On the KV260, as shown in Figure 1, additional units
are included to support DPU computation: one unit
schedules instructions for the DPU, and another transfers
data from external DRAM to BRAM, making the data
accessible to the DPU. These units are connected to the
CPU in the PS (Processing System) part via the AXI bus,
enabling the DPU to perform operations on data fetched
from DRAM.

Due to hardware limitations of the Zynq UltraScale+
on the KV260, only a single DPU is included in the basic
design for this hackathon. However, for highly motivated
participants, we also provide the option to use multiple
DPUs with smaller hardware configurations.

It is handled by "xmutel” commands from the PS pro-
gram.

B. Implementation Procedure of YOLO v3

In this hackathon, we used an image recognition pro-
gram based on YOLO (You Only Look Once) v3 [5] as the
application. The implementation on the FPGA is carried
out following the steps shown in Figure 2. These steps
are publicly available on [6], and students follow them as
they proceed with the implementation.

The hackathon was conducted in sessions of 12 to
15 students, with each student provided with a KV260
board, cables, a web camera, and a pre-configured PC
account.

C. Training YOLO v3 Using Darknet

After logging into the PC, students perform the train-
ing of YOLO v3 using Google Colaboratory and the dark-
net framework. For this purpose, a darknet folder is dis-

‘ Learning for YOLO v3 by darknet ‘ Google Colaboratory

‘ Model transformation, Quantize ‘

‘ Connecting the KV260 to the host PC ‘ On the host PC

docker environment

@

‘ Transferring the weight data ‘

.

‘ Compile the program of YOLOv3 ‘

«

‘Loading the configuration data on the PL (xmutil) ‘ On the KV260 board

«

‘ Image recognition with the hardware (Still picture / Video) ‘

Evaluation of the results

Fig. 2. Steps for Implementing YOLO v3

tributed to the students, which they first upload to Google
Colaboratory. They then compile and execute the train-
ing by clicking through the code cells.

This step can take several hours and often runs into
time limitations imposed by Google Colaboratory. In this
hackathon, we distributed pre-trained weight data files.
For students who wished to perform additional training,
we provided access to a GPU-equipped server.

D. Model Conversion

The generated or distributed weight data files are then
converted into a format compatible with FPGA.

The provided PCs are equipped with a Linux environ-
ment using WSL2. Students launch a terminal, select
Ubuntu, and operate within this environment. A direc-
tory for Vitis-AI is preconfigured, into which students
copy the trained weight data.

Next, they launch Docker for the Linux environment
(Ubuntu on WSL(Windows Subsystem for Linux)).
Within Docker, they activate conda, enable the vitis-ai-
tensorflow2 environment, and use a script to convert the
darknet model into one written with the Keras library.

With this setup, they can now run the quantization
program. Using a pre-prepared Python script called
my_quantizer.py, they perform quantization and then run
the script compile_yolov3.sh to generate data files for the
FPGA.

At this point, three files are generated: the model,
weight data, and an md5sum.txt file. These files need
to be transferred to the FPGA in order to run the appli-
cation.

E. Connecting KV260 board to the host PC

Now, we connect the KV260 board to the host PC as
shown in Figure 3 with the serial cable and the Ethernet.
To begin, a serial connection is established using a ter-

minal program MobaXterm, and the power is turned on
for the KV260 board. The board boots from an SSD card

-280 -

Fig. 3. Connection of the KV260 board

containing a Linux environment for experimentation, and
Ubuntu Linux starts running on the PS (Processing Sys-
tem) of the KV260.

Next, a terminal is opened on the KV260 board, and
the IP address is configured. Once both the Windows 11
settings on the PC and the IP configuration on the KV260
are completed, a local connection becomes possible. At
this point, a second terminal is opened in MobaXterm,
and SSH is used to access the board.

Once these steps are completed, the experimental envi-
ronment is ready.

If students are comfortable with vim, they can edit files
directly on the Linux system. However, since many stu-
dents are unfamiliar with vim, VS Code is launched in-
stead. VS Code is also useful later when working with
images, so it’s convenient to start it at this stage. Since
it is pre-installed on the host PC, students only need to
click the icon and select ”Connect via SSH” to begin.

At this point, the following four windows are open:

e The Docker/conda environment window on the host
PC (Docker window)

e The FPGA window opened in VS Code (VS Code
window)

e The MobaXterm window used for serial connection
(MobaXterm window)

e The FPGA window connected via SSH (FPGA win-
dow)

It is easy to get confused about which window to use,
but the main ones are the Docker window and the FPGA
window. The VS Code window is used only in special
cases, and the MobaXterm window is only needed when
rebooting or reconnecting the FPGA.

F. Inference on FPGA

In the FPGA window, create a working directory.
Then, in the Docker window, transfer the three files gen-

Fig. 4. A recognition example of a still picture

erated during quantization — xmodel, md5sum.txt, and
meta.json — to that directory using the scp command.

Next, in the FPGA window, copy the pre-prepared pro-
totext file yolov3_coco_41_tf2.prototxt into the working di-
rectory. In this file, the num_class field should reflect the
maximum number of labels for classification. It is set to
80 by default, so it should be changed to 3. This can be
done either using vim in the FPGA window or with the
code command in the VS Code window.

Once the setup is complete, by running a script file, two
C++ files, test_jpeg-yolov3.cpp and test_file_yolov3.cpp,
are compiled.

Next, load the design data into the PS (Processing Sys-
tem) and PL (Programmable Logic) parts. To do this,
we use the xmutil commands. First, display the currently
loaded application (xmutil listapps), then unload it (xmu-
til unloadapp), and finally load the newly compiled design
data (xmutil loadapp kv260-benchmark-b4096).

As the test image, a still picture of cars is selected and
copied from the Coco-image set, and the image recogni-
tion is executed with the compiled C++ code.

The result shown in Figure 4 is obtained.

G. Video Recognition

To perform video recognition, it is necessary to compile
the program by linking it with Xilinx’s VART (Vitis-Al
Runtime Library). We used a script file to compile the
C++ source file with the link of YOLO v3 model.

Executing the script generates a file named ’yolov3d’,
and by entering the following command in the VSCode
(FPGA) window, video recognition becomes possible. An
example is shown in Figure 5. The FPS (Frames Per
Second) is displayed in the top left corner and serves as a
performance metric.

On the other hand, accuracy is evaluated using a graph
of mAP (mean Average Precision) as shown in Figure 6.
Students are evaluated with the FPS and the mAP.

- 281 -

Fig. 5. An example of video recognition

cd ~/Vitis-AI/examples/Vitis-AI-Library/samples/yolov3
./test_file_yolov3 dpu_yolov3-608 val2017.txt

cd mAP

python3 main.py -na

IR ——— o x

mMAP = 36.86% detection-results

(953 files and 3 detected classes)

- raise Positive
—True Positive

0 1000 1500 2000 2500 3000 3500
Number of objects per class.

Fig. 6. mean Average Precision

H. Optimization Strategy

In the following steps, participants are free to modify
the program and execution environment as they wish to
improve performance and accuracy. However, we provide
the following strategies as hints:

e Implement YOLOv3-tiny:
model

Requires rebuilding the

e Pipelining and multithreading: Sample code is pro-
vided for multithreading only

e Change the input image size: Sacrifices accuracy but
improves performance

e Convert the initially used Keras model to an ONNX
model

e Split the model using the ONNX model
e Tune the DPU

The program includes commented-out code to measure
execution time. We encourage participants to first enable
this code, measure the execution time of each process,
perform profiling, and then proceed with optimization.

TABLE 1
PARTICIPANTS OF 2024 HACKATHON

Under graduate 20 Graduate 27

Course School
Machanical Eng. 6 Electrical 16
Electrical/Informatics | 3 | System Creation | 2
Informatics 2 Material 1
Precision Eng. 2 | Interdisciplinary | 1
System Creation 2 Precision Eng. 1
Material 1 Social infra. 1
Aerospace 1 | Compr. Culture | 1
Liberal Arts 2 New Area 2
Literature 1 Electro. Inf. 1
Intelligence Inf. 1

The final method involves modifying the use of the
DPUCZDXS8G integrated on the KV260 board, making
it a highly advanced approach. The DPUCZDXS8G al-
lows the construction of one or multiple DPU cores of
eight different sizes. The KV260 used here is equipped
with only a single B4096 core and operates with the ap-
plication called kv260-benchmark-b4096. Due to resource
limitations, the KV260 can only accommodate one B4096
core.

Alternatively, it is possible to use smaller-sized cores
and increase processing speed through parallelization by
incorporating multiple cores—for example, using configu-
rations such as B512x3-4, B1600x2, or B1024x3. How-
ever, whether sufficient resources are available depends
on careful adjustment of the configuration settings. An-
other possible optimization approach is to increase the
clock frequency. Participants who attempted this level of
optimization used PCs with Vitis/Vivado installed.

IV. EXPERIMENTAL EXAMPLES

In the 2024 academic year, the Semiconductor Design
Hackathon was held as an intensive summer course, open
to both graduate and undergraduate students. Due to the
limited number of participants per session, the hackathon
was conducted over four days per session, with a total of
four sessions and 47 participants overall.

To share results and present awards, a separate final
presentation day was held, during which participants vis-
ited Hitachi’s research laboratories for external presenta-
tions and discussions. During the hackathon, a lab tour of
the Kosuge Laboratory was conducted, including micro-
scope observations of actual chips, to spark participants’
interest in the field.

The breakdown of participants is shown in Table I.

There were 20 undergraduate and 27 graduate student
participants, representing a diverse range of departments
and majors. Notably, participants included students from
humanities-related fields such as Liberal Arts and Liter-

-282-

TABLE II
EXAMPLES OF OPTIMIZATION

Design FPS | mAP | Optimization Method

No Opt. | 2.6 45 Using YOLO v3

Mitarai | 75.0 | 24.3 | Using YOLO v3-tiny
Adjusting the timing of

the displayFrame function call
Reducing the frequency

of waitKey

Controlling thread execution
order in parallel processing

Changing image size

Pan 9 47
101 | 12

Using YOLO v3

Using YOLO v3-tiny
Utilizing multiple DPUs
via multithreading

Trying new models

such as YOLO v10-n
Retraining according

to Resize and Quantization

Yu 70.3 | 25.1 | Using YOLO v3-tiny
Increasing the number
of threads

Reducing display frequency

ature, which is particularly remarkable. All participants
successfully carried out some form of optimization and
were able to improve both performance and accuracy.

A. Examples of optimizations

Here, as examples of optimization by participants, the
results of three individuals listed as authors of this paper
are shown in Table II.

Many students attempted to switch to YOLO v3-tiny,
a method that improves performance at the cost of ac-
curacy. Mitarai enhanced performance by reducing the
frequency of the displayFrame function execution. He
modified the program to utilize an input buffer, allowing
display only when the buffer became saturated.

The idea behind reducing the execution of wait-
Key—which detects key presses to terminate the YOLO
process—is to slightly improve execution time by skipping
some of these checks. Changing the image size is also ef-
fective for improving performance; however, this compro-
mises accuracy, and retraining is necessary to maintain
it.

Pan experimented with various models, retraining each
to preserve accuracy. Furthermore, he utilized four avail-
able DPUs efficiently with parallel threads while imple-
menting mechanisms to maintain the correct output order
despite parallel execution.

Similarly, Yu also used multithreading and improved
performance by reducing the display frequency.

V. CONCLUSION

This paper reports on the results of a hackathon in
which participants implemented image recognition using
YOLO on an FPGA board and competed in terms of per-
formance and recognition accuracy, even without prior
knowledge of hardware design. We provided detailed sup-
port, such as offering access to GPU resources for training
and preparing a Vitis/Vivado environment for those in-
terested in optimizing the DPU. On the other hand, some
students independently achieved advanced optimizations
without relying heavily on teaching assistants, instead us-
ing ChatGPT or exploring resources and sample programs
available online.

Notably, students from humanities backgrounds per-
formed on par with their peers. While most participants
joined primarily out of interest in A, they ended up gain-
ing curiosity and enthusiasm for FPGAs, hardware, and
semiconductors. We believe this means the hackathon
successfully met its objectives.

In the 2024 trial, participation was limited to the Uni-
versity of Tokyo, but in 2025, the event was open to
the general public. Eighteen teams participated, and the
event is scheduled to take place as a research seminar on
June 25, 2025. Additionally, an initiative to conduct the
hackathon for a larger number of participants using AWS
F1/F2 instances has also begun. The results of these trials
will be reported at a later time.

REFERENCES

[1] A.Kosuge and et.al, “Agile-X: A Structured-ASIC Created
with a Mask-less Lithography System Enabling Low-Cost
and Agile Chip Fabrication,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 33-3, pp. 746-756,
Mar. 2025.

[2] Ministry of Economy, Trade and Industry, “Al
edge contest,” accessed: 2024-12-12. [Online]. Avail-
able: https://www.meti.go.jp/policy /mono_info_service/
joho/aiedge/index.html

[3] Intel, “InnovateFPGA
cessed: 2024-12-12.

design contest,” ac-
[Online]. Available:

https://www.intel.co.jp/content/www /jp/ja/products/docs/

programmable/innovate-fpga-design-contest.htm

[4] AMD/Xilinx, “Kria KV260 Vision AI Starter
Kit,” accessed: 2024-12-12. [Online]. Avail-
able: https://www.amd.com/ja/products/system-on-

modules/kria/k26 /kv260-vision-starter-kit.html

[5] Joseph Redmon, Ali Farhadi, “YOLOv3: An Incremental
Improvement,” arXiv:1804.02767, 2018.

[6] M.Nitami, T.Goto , “Semiconductor Design Hackathon
2024 wiki,” accessed: 2024-12-12. [Online]. Available:
https://github.com/takgto/utokyo-chipathon2023/wiki/

-283 -

