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Using Radial Basis Function Neural Network 

Abstract – To reduce the production testing costs without 

sacrificing quality, a wafer to lot-level performance prediction 
has gained traction as a key enabler for production tests. 

Although many effective prediction methods for physical 

properties have been proposed, there are a few methods that can 
predict S-parameters accurately.  In this study, we propose a 

novel S-parameter prediction method based Radial Basis 

Function neural network to make the accurate predictions using 
a minimal data set. 

I. Introduction

Recently, the reduction of wafer testing costs without 

sacrificing quality has been required in the manufacturing of 

large-scale integrated circuits (LSIs). An increasing number of 

researchers has been focusing on the direct prediction of 

physical parameters, aiming to bypass the complex procedures 

of traditional numerical simulations and enhance modeling 

efficiency and predictive accuracy. To solve this problem, 

machine learning methods such as Gaussian process [1] have 

been proposed due to improvements in computational power 

and innovations in algorithms. Although existing methods for 

predicting wafer-level physical properties have achieved 

satisfactory results, the prediction of S-parameters obtained 

from radio frequency (RF) measurements remains challenging. 

Fig. 1 illustrates the definition of S-parameters for two-port 

network. Since the digit precision in the numerical difference 

of S-parameters affects the prediction results, ordinary 

machine learning models cannot accurately predict the 

characteristics of the datasets [2, 3, 4]. 

Moreover, when S-parameters are used to analyze circuit 

characteristics, we need to handle large-scale samples because 

S-parameters are typically obtained through frequency

scanning. As a result, the time and computational costs

associated with processing large-scale data increase, making it

challenging to obtain the predicted S-parameters.

Considering these issues, we propose a novel RF testing 

technique using a Radial Basis Function (RBF) neural network 

[5] to predict the S-parameters.

The RBF neural network model demonstrates exceptional

capabilities in localized feature extraction and nonlinear 

modeling. It is currently widely used in various fields, such as 

financial data prediction and physical property prediction. It 

effectively mitigates the issue of traditional models that are 

difficult to learn characteristics accurately due to small 

differences in numerical accuracy and the complexity of 

learning patterns in large datasets. By applying the RBF neural 

network model, it is expected that the number of measurement 

devices under test (DUT) on a wafer will be reduced, resulting 

in cost savings. 

This paper is organized as follows: Section II introduces the 

specific details of the RBF neural network model within our 

testing strategy, as well as the experimental setup and 

evaluation methods. Section III presents the results of the 

experiments, while Section IV provides a summary and 

conclusions. 

II. Experimental Methodology

A. Data preparation

The dataset used in this work was obtained through on-

wafer RF measurements of fabricated devices. Each 

measurement consists of the following parameters: bias 

voltages, chip position, and measurement frequency, along 

with the corresponding S-parameters. The frequency range 

spans from 200 MHz to 20 GHz, sampled at 100 points per 

voltage condition. 

The dataset is structured into the input features and targets 

depending on the prediction task. 

The input vector X includes: 

𝑋 = [wafer_number, 𝑥, 𝑦, 𝑉𝑑 , 𝑉𝑔, frequency]
𝑇

∈ ℝ𝑑   (1)

where x and y represent the chip coordinates on the wafer, and 

𝑉𝑑, 𝑉𝑔 are the drain and gate voltages, respectively. 

The target vector Y corresponds to the complex S-

parameters at a given frequency, represented as: 

𝑌 = [𝑅𝑒(𝑠11), 𝐼𝑚(𝑠11), 𝑅𝑒(𝑠12), 𝐼𝑚(𝑠12), 

𝑅𝑒(𝑠21), 𝐼𝑚(𝑠21), 𝑅𝑒(𝑠22), 𝐼𝑚(𝑠22)]     (2) 

Min-Max normalization was applied to the data to improve 

the model’s ability to learn relationships between vectors. 

B. Experimental setup

In this work, we describe the experimental setup used to

Fig.1. S-parameters for two-port network 
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evaluate the model performance across wafer-level and lot-

level. 

For wafer-level prediction, 8 chips were selected from a 

single wafer as training data. According to related work [1], 

the chosen chips can have a slight impact on the prediction 

results; therefore, we try to choose the points that are evenly 

distributed on the wafer surface. Examples of the 8 selected 

chips are shown in fig. 2, where the gray chips indicate those 

with the training data. The light blue chips represent the 

prediction targets, and the black chip is presented as an 

example of a prediction result. 

For lot-level prediction using multiple wafers, the same 

approach was taken to select 8 chips on a single wafer, as 

shown in fig. 2. Subsequently, the same 8 chips were 

consistently chosen from 3 wafers as the training data. This 

approach allows us to determine whether the neural network 

can accurately capture the relationship between the wafers. We 

selected wafer numbered 2, 5 and 10 (Wafer02, Wafer05, 

Wafer10) to predict wafer number 8 (Wafer08). 

C. Structure of RBF neural network

The standard RBF neural network has a three-layer forward

structure: the input layer, the hidden layer and the output layer. 
The RBF neural network employs a Gaussian kernel activation 

as the first hidden layer, followed by two fully connected 

layers with Rectified Linear Unit (ReLU) activations. The final 

layer produces the predicted S-parameters via a linear 

transformation. 

The proposed model consists of an input layer with 6 

neurons corresponding to spatial, electrical, and frequency 

features as shown in fig.3. We consider (Xtrain, Ytrain) = {(X1, Y1), 

(X2, Y2), (X3, Y3), (X4, Y4), …, (Xn, Yn)} as the training datasets 

and Xtest = (X1
*, X2

*, X3
*, …, Xm

*) as the testing datasets, where 

m >> n.

The RBF layer is as follow: 

∅𝑖(𝑋) = 𝑒𝑥𝑝 (−
‖𝑋−𝑐𝑖 ‖2

2𝜎𝑖
2 ), i = 1, 2, 3, …, n    (3) 

ℎ(1) = [∅1(𝑋), ∅2(𝑋), ∅3(𝑋), … , ∅𝑛(𝑋)]𝑇𝜖ℝ𝑛  (4) 

where  𝑐𝑖 ∈ ℝ𝑑 , which represents the center of the i-th 

kernel.  𝜎𝑖  is defined as the average Euclidean distance 

between the i-th center and its neighboring centers. The output 

of RBF layer is given as follows in Eq. (4). 

The proposed model, the centers of the radial basis functions 

are defined as trainable parameters. Specifically, the centers 

are initialized randomly and updated through backpropagation 

during training, enable the network to adaptively learn optimal 

kernel locations based on the input distribution. And the 

proposed model was trained using the mean squared error 

(MSE) loss function to minimize the squared difference 

between predicted and true values. Parameter optimizer was 

performed using the Adam optimizer, an adaptive learning rate 

method that computes individual learning rates for each 

parameter based on estimates of first and second moments of 

the gradients. This approach facilitates fast and stable 

convergence during training. 

D. Evaluation methods

In this paper, the Mean Absolute Percentage Error (MAPE)

was chosen as the evaluation method for errors. MAPE is a 

measure of prediction accuracy used in statistical forecasting. 

It typically expresses accuracy as a ratio defined by the 

following formula: 

MAPE =
1

𝑛
∑ ‖

𝑌𝑡𝑟𝑢𝑒−𝑌𝑝𝑟𝑒

𝑌𝑡𝑟𝑢𝑒
‖𝑛

𝑖=1  (5) 

where 𝑌𝑡𝑟𝑢𝑒  is the actual value, and 𝑌𝑝𝑟𝑒  is the prediction 

value. The difference between the actual value and the 

predicted value is divided by the actual value. Then, the 

absolute value of this ratio is summed for every predicted point 

and then divided by the number of fitted points n. 

III. Results and Discussion
In this chapter, we focus on summarizing our experimental 

results. Under the test conditions of 85 ℃, at the same device 

name with Vd = 1.2V and Vg = 1.2V in the frequency range of 

200M ~ 2G Hz, two chips were selected for the presentation 

of results: one is (x, y) = (0, 0) and the other is (x, y) = (1, 3). 

The discussion is organized into two sections: one is wafer-

level prediction results, and the other is lot-level prediction 

results. For the wafer-level case, we additionally compared our 

method with previous approaches. 

A. Wafer-level prediction results

Fig.4. shows a comparison of the S-parameters prediction

Fig. 2. Examples of the 8 selected chips 

Fig. 3. RBF neural network in this study 
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results for Wafer02 between our proposed model and the 

Gaussian process method (GPy) described earlier. As shown in 

the fig. 4, the predicted results from the proposed method for 

S-parameters S11, S12, S21 and S22 fit well with the

corresponding measured S-parameters at chip (0, 0).

From the results, GPy performs well on certain outputs but 

shows inconsistent performance across the entire output set. 

This indicates that GPy struggles to effectively capture the 

relationship between inputs and outputs. A contributing factor 

is the large variability or disparity within the input data, which 

poses challenges for the GPy model. Even after normalization, 

GPy model is still unable to learn the underlying correlations 

effectively, likely because such heterogeneity in the data 

distribution hinders the Gaussian process ability to generalize. 

In contrast, compared with GPy model, the RBF neural 

network model achieved better results under the same input 

conditions. 

While, to verify the training stability and generalization 

performance of the proposed model, we monitored the loss 

values on both the training and validation datasets during the 

training process. 

As shown in fig.5, the solid line represents the loss on the 

training set, while the dashed line represents the loss on the 

validation set. The RBF neural network model was optimized 

using the Adam algorithm with the MSE loss function. The 

smooth and consistent convergence of both curves indicates 

stable learning and good generalization performance. 

Therefore, our proposed method demonstrates a good 

(a)                                               (b) 
Fig. 6. S-parameters prediction results for lot-level test on Wafer08 of (a) (x, y) = (0, 0) and (b) (x, y) = (1, 3). The solid lines 

represent the real parts of S-parameters, and the dashed lines represent the imaginary parts of S-parameters. For both (a) and 

(b), darker colors and lighter colors represent the measured data and the predicted results, respectively. 

Fig. 4. S-parameters prediction results for wafer-level test on Wafer02 between the proposed RBF neural network model and 

the GPy model. The dot-dashed line corresponds to the RBF model’s prediction, the dotted line indicates the prediction result 

from the GPy model, and the gray solid line represents the actual measured values. 

Fig. 5. Training and validation loss curves 
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performance at the wafer-level predictions. 

B. Lot-level prediction results

The RBF neural network demonstrated effective prediction

of lot-level S-parameters as shown in fig.6. 

In the lot-level experiment, only a limited number of data 

points from three wafers (Wafer02, Wafer05 and Wafer10) 

were used to train the model. Despite this limitation, the model 

accurately predicted the characteristics of Wafer08, which was 

excluded from the training set. The close agreement between 

the predicted and measured results suggests that the RBF 

neural network exhibits robust performance and generalization 

ability across different wafers within the same lot. 

C. Evaluation and discussion

In this section, we summarize the experimental results and 

compute the MAPE between the predicted and measurement 

values. The calculation results are presented in Table I. The 

experimental evaluation results show that the MAPE of the 

proposed RBF neural network is less than 1% in both wafer-

level and lot-level prediction tasks. The sub-1% error means 

the RBF neural network effectively captures the complex 

relationship between input characteristics such as voltage 

settings and spatial coordinates, and the real and imaginary 

components of the S-parameters. 

However, this study was limited to a single manufacturing 

lot and four wafers. While preliminary results demonstrate 

promising accuracy, the model’s robustness remains uncertain. 

To fully validate the model, future work should focus on the 

following areas: 

1. Dataset Expansion: Future studies should evaluate

model’s performance under different process variations

and environmental factors. This approach will help

reduce the risk of overfitting.

2. Algorithm Innovation: We will also explore alternative

approaches that have the potential to significantly 

improve prediction accuracy.

IV. Conclusions

In this paper, we proposed a novel Radial Basis Function 

neural network model for predicting S-parameters, achieving 

a Mean Absolute Percentage Error of less than 1% in both 

wafer-level and lot-level predictions. The Radial Basis 

Function neural network has been validated to demonstrate its 

capability in predicting S-parameters. Our proposed method 

effectively addresses the limitations of conventional 

approaches that fail to capture high-dimensional 

characteristics. 

In future studies, we plan to further optimize and refine the 

model architecture. Additionally, we will investigate the 

potential application of this methodology in industrial 

production processes, with the aim of reducing testing costs 

while maintaining measurement accuracy. 
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TABLE I 

MAPE between Predicted and Measurement Values 

Wafer-level Lot-level 

Wafer number Wafer02 Wafer08 

Chip (0,0) (1,3) (0,0) (1,3) 

MAPE_s11_real 0.03% 0.04% 0.15% 0.05% 

MAPE_s11_imag 0.02% 0.05% 0.07% 0.04% 

MAPE_s12_real 0.45% 0.42% 0.59% 0.39% 

MAPE_s12_imag 0.04% 0.10% 0.18% 0.07% 

MAPE_s21_real 0.05% 0.09% 0.04% 0.11% 

MAPE_s21_imag 0.04% 0.08% 0.07% 0.10% 

MAPE_s22_real 0.05% 0.05% 0.05% 0.04% 

MAPE_s22_imag 0.02% 0.05% 0.03% 0.03% 
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