
 

 

Cross-Modal Quantization of BLIP-2 Using Activation-Aware Weight Quantization 
 

 

 

This work extends Activation-aware Weight Quantization (AWQ) 

to the multimodal BLIP-2 framework, targeting language and 

vision modules. We apply AWQ to OPT-2.7B and perform 

quantization of the Value projection within the fused QKV 

structure in EVA-ViT-G. Our method enables efficient inference 

on memory-limited edge devices. Evaluation on COCO VQA v2 

shows AWQ reduces memory and preserves language accuracy, 

while full quantization boosts efficiency but degrades accuracy 

and latency, highlighting trade-offs in cross-modal quantization.  

 

I. Introduction 
 

  The increasing demand for real-time vision-language 

understanding on edge devices calls for efficient deployment of large 
pre-trained models. Recent advances in vision-language architectures, 

such as BLIP-2 [2] (Bootstrapping Language-Image Pre-training), 

combine large language models (LLMs) like OPT-2.7B (Open Pre-

trained Transformer 2.7B, a large-scale causal language model 
developed by Meta AI) [3] with powerful vision encoders, including 

EVA-ViT-G (a high-capacity Vision Transformer model optimized for 

large-scale visual recognition) [4] in a two-stage framework. BLIP-2 

[2] employs a pretrained vision transformer and a language model 
bridged by a learned query interface, enabling efficient multimodal 

learning. However, their large parameter sizes and high memory 

footprints pose significant challenges for low-power inference. Post-
training quantization techniques like Activation-aware Weight 

Quantization (AWQ) [1], a post-training method that groups and 

scales weights based on activation sensitivity, offer a promising 

solution for compressing LLMs. However, applying AWQ [1] to 
vision transformers (ViTs) [6] remains limited and non-trivial due to 

architectural differences. 

 

  This work applies modular AWQ [1] quantization to BLIP-2 [2], 
encompassing both OPT-2.7B [3] and EVA-ViT-G [4]. While OPT 

integrates with AWQ seamlessly, EVA-ViT-G's [4] fused QKV 

structure requires structural adaptations. We introduce dequantization 

and weight-decoding mechanisms to extend AWQ [1] for vision 
modules and analyze the trade-offs. 

  The key contributions of this work are: 1. A unified AWQ-based 

quantization [1] pipeline for both language and vision modules in 

BLIP-2 [2]. 2. Structural adaptations to support ViT-specific [6] 
quantization. 3. Evaluation of quantized models on COCO VQA v2 

[5], analyzing memory, accuracy, and latency. 

 

 

II. Method 
 

  This study applies Activation-aware Weight Quantization (AWQ) 
[1] to BLIP-2 [2] to enhance efficiency on mid-range GPUs. Separate 

workflows are designed for OPT-2.7B [3] and EVA-ViT-G [4], 

accounting for architectural differences. Experiments are conducted 

 
 All of the authors contributed equally. 

on an NVIDIA RTX 3060 GPU with 12GB memory. 

 

A. Adaptive Weight Quantization (AWQ) Technique 
 

  AWQ is a finetuning-free post-training quantization method that 

groups weights by output sensitivity, compressing them to INT4 with 
group-wise scaling. It performs layer-wise grouping and calibration 

using representative input data to preserve model behavior. 

 

B. Quantization Strategy for the OPT Model 
 

  The OPT-2.7B [3] model is fully compatible with AWQ [1]. We 

quantize it to INT4 with group size 128 using 256 calibration prompts 
from COCO VQA v2 [5]. No structural changes are needed, and the 

quantized model maintains language generation capability within 

BLIP-2 [2]. 

 

C. Quantization Strategy for the EVA-ViT-G 
 

  EVA-ViT-G [4] features a fused QKV attention layer incompatible 
with AWQ [1]. We isolate the Value (V) projection and quantize it to 

INT4 while keeping Query (Q) and Key (K) in full precision. Other 

linear layers are quantized with group size 64. We implement a 
custom deployment routine to ensure AWQ [1] compatibility with the 

weight loading behavior of EVA-ViT-G [4]. 

 

 

III. Experimental Design and Evaluation 
 

  We evaluate our method on 1000 samples from the COCO VQA 
v2 [5] validation set, encompassing question types such as yes/no, 

number, and open-ended. Evaluation metrics include accuracy, 

inference latency, and GPU memory consumption. Notably, the 

quantized models retain strong performance on yes/no questions, 
achieving 70.74% with the full-precision model, 66.52% with OPT-

2.7B quantized, and 60.72% with both language and vision modules 

quantized, demonstrating robustness in binary reasoning. The full-

precision baseline achieves 51.46% overall accuracy, with 1187.09 
seconds of inference time and a memory footprint of 8332 MiB. 

Quantizing only the language model yields a 39.3% memory 

reduction with a moderate accuracy drop to 49.43%. Full quantization 

of both modules further reduces memory usage to 4214 MiB, but 
results in increased latency (3167.58 seconds) and a larger decline in 

accuracy (26.59%). 

 

 

IV. Quantization Strategy and Architectural Adaptations 
 

  AWQ [1] quantization of OPT-2.7B [3] yields significant memory 
savings with minimal accuracy loss. However, direct INT4  
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TABLE I 

VQA Accuracy, Inference Time, and Memory Usage for BLIP-2 Under Different Quantization Configurations 

 

 

 
quantization of EVA’s [4] fused QKV matrix impairs performance due 

to disrupted attention computations. In particular, direct quantization 

of the fused QKV projection layer in EVA-ViT-G [4] leads to severe 
performance degradation, with the “other” category dropping to only 

3.83%, indicating that this layer requires separate handling during 

quantization. To mitigate this issue, we adopt a selective quantization 

strategy whereby only the Value (V) projection is quantized to INT4, 
while the Query (Q) and Key (K) projections remain in full precision. 

This approach preserves the integrity of the attention mechanism and 

ensures reliable inference, enabling efficient cross-modal 

quantization. 
 

  To elucidate the trade-offs involved, we analyze the accuracy 

degradation in relation to memory savings across different 

quantization configurations. Quantizing only the language module 
(OPT-2.7B [3]) results in a 39.3% reduction in GPU memory 

consumption with a modest 3.6 percentage point decrease in yes/no 

accuracy. This outcome demonstrates the effectiveness of AWQ [1] 

when applied to transformer-based language models. Conversely, 
extending AWQ [1] to both the language and vision modules achieves 

a greater memory reduction (−49.4%) but incurs a substantial overall 

accuracy decline, especially in number and open-ended question 
categories. Notably, the yes/no accuracy remains relatively stable, 

suggesting that simpler binary reasoning tasks are less sensitive to 

degradation in the vision encoder. 

 
  Additionally, we observe an increase in inference latency from 

1187.09 seconds to 3327.14 seconds upon full quantization, using the 

same GPU. This latency overhead primarily stems from mixed-
precision kernel dispatch and suboptimal memory alignment within 

the customized EVA-ViT-G [4] quantization kernel. These findings 

indicate that while full-model quantization is feasible for memory-

constrained environments, further optimization is required to meet 
latency demands in real-time applications. 

 

  Finally, we evaluate model robustness by examining performance 

variance across question types. The results reveal that numerical 
questions are particularly susceptible to accuracy degradation due to 

reduced precision in the vision encoder, highlighting the potential 

necessity for selectively preserving precision in value-sensitive 

attention layers. 
 

 

V. Conclusion 
 
  This work demonstrates the feasibility of applying Activation-

aware Weight Quantization to both the language and vision modules 

in cross-modal architectures like BLIP-2 [2]. While AWQ [1] is 

directly applicable to LLMs, extending it to fused QKV structures in 
vision transformers requires structural adaptation. Our proposed 

selective quantization strategy preserves inference functionality and 

significantly reduces memory usage, making it suitable for 

deployment on memory-constrained hardware. Future work includes 
further optimizing accuracy through quantization-aware training and 

evaluating the design on actual AI accelerator platforms. 
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Models VQA acc. Timea GPU Mem. 

BLIP-2 Overall(%) yes/no(%) number(%) other(%)   

ViT-g + OPT2.7B 51.46 70.15 27.95 43.59 1187.09 s 8332 MiB 

ViT-g + AWQ OPT2.7B 49.43 66.52 28.75 42.00 2180.59 s 5054 MiB 

AWQ ViT-g (V-Only) + AWQ OPT2.7B 26.59 60.72 10.41 5.20 3160.13 s 4210 MiB 

AWQ ViT-g (Fused-QKV) + AWQ OPT2.7B 24.19 57.57 6.27 3.83 3327.14 s 3790 MiB 

a
Total time required for the model to perform inference on 1000 images from the VQAv2 Validation Set using a single GPU. 
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