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Abstract— This paper proposes a method to quantify difficulty
level of analog circuits. Analog circuits have many design param-
eters and performance measures, so it is difficult to set adequate
target specifications as well as circuit design. However, there is
less discussion about how to evaluate the design difficulty level
quantitatively. We focus on the volume of design space where the
performance meets the target specification. The proposed method
calculates the volume of design space by using linear classifiers
and slack variables. Numerical experiments show that the effec-
tive volume of design space can be used the measure of design
difficulty level.

I. introduction

Automated design of analog circuits has been a big chal-
lenge in integrated circuit design. Compared to digital circuits,
analog circuits have wide variety of performance figures, and
the design space is huge and high-dimensional. So, evalu-
ating the performance and exploring the design space needs
extremely high cost [1, 2]. Additionally, layout design and
parasitics strongly affect the performance. Considering lay-
out and parasitics makes the problem more complex. Thanks
to progress of neural network, machine learning and AI tech-
nology, automated analog design also improved drastically [3].

However, it is not clear how to evaluate the performance re-
quirement. Analog circuits have many performance figures, for
example gain, power, bandwidth, noise, dynamic range, and so
on. The relationship among these figures is complicated and
intertwined. So, it is difficult to evaluate how difficult the per-
formance requirement is. This is also related to process se-
lection. To predict how high performance is achievable in a
fabrication process, some basic parameters like transconduc-
tance gm and its power efficiency gm/ID, cutoff frequency fT
are used. We can predict the performance of small circuits like
single-stage amplifiers from these parameters, but it is not easy
to predict larger circuits like opamp, VCO (Voltage-Controlled
Oscillator) and so on. If we can know the difficulty of design
at the early stage of design, it helps circuit design, target spec-
ification determination, and fabrication process selection.

The goal of this work is design-difficulty quantification of
analog circuits. We propose to use a volume of effectual de-
sign space. Here, the word “effectual design space” means the

region where the circuit performance meets the minimum re-
quirement. If the effectual design space is large, many param-
eter sets can meet the minimum requirement, and it means the
design difficulty is low. However, the design space of analog
circuits is high-dimensional space. Exploring in such high-
dimensional space to determine the effectual design space and
calculating the volume of the effectual design space need huge
computational cost. To solve this problem, we employ linear
classifier and slack variable.

The contribution of this paper is a method to quantify the
design difficulty of analog circuit. It is useful for early stage
of circuit design, specification development, and fabrication
process selection.

The rest of this paper is organized as follows. Section II
explains the problem and the key idea. Section III describes
the proposed method, and Section IV verifies by circuit simu-
lation. Section V summarizes the discussion.

II. Effectual Design Space of Analog Circuit

This section describes “effectual design space” and its vol-
ume, which is the key to the proposed method.

A. Definition of Terms

First, we define some terms in this paper. The word require-
ment is a performance which the circuit under design has to
satisfy. For example, gain, power consumption, bandwidth,
phase margin, and so on. The circuit design has to meet all re-
quirements. The work design parameter is a parameter which
designers can tune. For example, channel length L, channel
width W, and the value of passive components. Each design
parameter has a range of values. The range is determined by
design rules, area, and so on. In this paper, we assume that the
circuit topology is fixed. All combinations of design parame-
ters is called design space. Since all devices have 1 or more
design parameters, the design space is high-dimensional space.
For example, if a circuit has 10 transistors and each transistor
can be tuned in L and W, the design space is 20-dimensional
space. In design space, limited combination of design param-
eters can satisfy all requirements. We call this subspace where
all requirements are satisfied as effectual design space.
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Fig. 1. Definition of design parameter, design space, requirement, and
effectual design space.
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Fig. 2. Volume of effectual design space and design difficulty.

B. Effectual Design Space and Its Volume

A conceptual figure of effectual design space is show in
Fig. 1. For simplicity, the design space is 2-dimensional space
by two design parameters x1 and x2. In design space, a require-
ment corresponds to a border between meeting the requirement
and not. In Fig. 1 (a), requirement1 divides the design space
into (i) and (ii). In many cases, analog circuits have multi-
ple requirements. The design subspace where the circuit meets
all requirements is a space enclosed by requirement borders as
shown in Fig. 1 (b). We call this subspace as effectual design
space.

The effectual design space is determined by requirements.
As requirements change, the borders change, and the effectual
design space changes as shown in Fig. 2. If the effectual de-
sign space is large, many sets of design parameters can meet
the requirements, and the design difficulty is low. As the ef-
fectual design space becomes smaller, the design difficulty be-
comes higher. Depending on requirements, the effectual design
space can disappear. It means that it is impossible to satisfy all
requirements. In this case, designers have to change the re-
quirement(s), circuit topology, or the fabrication process. We
expect that the volume of effectual design space can be a mea-
sure of design difficulty. However, it is difficult to determine
the effectual design space and calculate the volume especially
in high-dimensional space. In the next section, we propose a
method to calculate the volume of effectual design space.

III. ProposedMethod for Volume Calculation of
Effectual Design Space

The key idea of our design difficulty quantification is to use
the volume of effectual design space as a measure of design
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x2 requirement

li lassifier

(a) conceptual figure (b) an example

Fig. 3. Approximate border by a linear classifier.

difficulty. However, calculating the volume of arbitrary space
is a class-#P problem. This section explains three techniques
to obtain approximate solutions.

A. Approximate Effectual Design Space by Linear Classifier

In n-dimensional space, a border determined by a require-
ment is a (n− 1)-dimensional hypersurface. It is costly to even
obtain one hypersurface, so it is difficult to obtain accurate ef-
fectual design space. To simplify the problem, we approximate
a hyperplane instead of the hypersurface. Fig. 3 shows a con-
cept in 2-dimensional space. The linear classifier is a linear
border expressed by

a0 +

n∑
i=1

(ai · xi) ≥ 0, (1)

where a is a constant and x is a design parameter. n is the
dimension of the design space. In Fig. 3 case, n = 2. We em-
ploy SVM (Support-Vector Machine) as linear classifier. As
shown in Fig. 3 (a), actual border from a requirement is a curve
(hypersurface). So, using a line (hyperplane) is rough approx-
imation. Fig. 3 (b) is an example of a linear classifier in an
amplifier design. X and Z are the normalized design param-
eters. Red dots are the samples that satisfy the requirement.
As shown in Fig. 3, the envelope of the red dots is not linear.
The blue line is the linear classifier. Since the border of the
effectual design space is nonlinear, classification fails in some
parts. The classification accuracy is lower than other complex
classifiers such as nonlinear classifiers, but by using linear clas-
sifiers, approximate effectual design space becomes a convex
hull. This enables effective evaluation when combined with
the following two techniques.

B. Volume Calculation by Markov-Chain Monte-Carlo
Method

For sampling in high-dimensional space, MCMC (Markov-
Chain Monte Carlo method) is known as an efficient method
[4–6]. We use random-walk sampling to evaluate the volume.
According to Ref. [7], counting the solutions of 0-1 knapsack
problem in polynomial time. For efficient random-walk sam-
pling, all design parameters are discrete value expressed by a
bit stream. As shown in Fig. 4, the range of each design pa-
rameter is divided by 2pi and expressed by pi-bit parameter. In
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Fig. 4. Design parameter concatenation for random-walk sampling.
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Fig. 5. Training data and linear classifier.

random-walk sampling, all design parameters are concatenated
to one long bit-stream. For example, 10 design parameters are
used and each of them are expressed by 5-bit, random-walk
sampling is done on one 5 × 10 = 50-bit parameter.

C. Slack Variables

The proposed method is based on linear classifier. To obtain
linear classifiers, we need training enough data because SVM
is supervised learning. When the requirement is high, gather-
ing training data becomes a problem. Fig. 5 shows simplified
figure. When the training data has enough samples that satisfy
and do not satisfy the requirement, the linear classifier is de-
termined properly like Fig. 5 (a). If the requirement is high,
the number of samples that satisfy the requirement becomes
small. As shown in Fig. 5 (b), it is difficult to determine the
linear classifier. However, it is difficult to increase the number
of samples that satisfy the high requirement.

To solve this problem, we employ slack variable. Slack vari-
able S is defined as

S = a0 +

n∑
i=1

(ai · xi) , (2)

that represents slide of the linear classifier. As shown in Fig. 6,
when the slack variable S becomes larger, the linear classi-
fier slides toward high-performance direction. By introducing

x1

x2

sample satisfying requirement

sample not satisfying requirement

S<0

S>0 low requirement

high requirement

Fig. 6. Meaning of slack variable.
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Fig. 7. Schematic of a two-stage operational amplifier.

slack variable, we can change the requirements without recre-
ating the linear classifiers.

IV. Simulation Results

This section verifies the proposed method by circuit simu-
lations. The system is implemented with Python. We use an
open-source 130-nm CMOS PDK [8].

A. Circuit under Discussion

We use a two-stage operational amplifier (opamp) shown in
Fig. 7. This circuit consists of 8 transistors, 1 resistor and 1
capacitor. Each transistor has two design parameters: channel
length L and channel width W. Since the first stage is a differ-
ential pair, M1 and M2 are the same size transistor. Also, M3
and M4 are the same. M5, M6, and M8 are a current mirror, so
the same channel length L is used for these transistors. Thus,
there are 12 design parameters: W1, W3, W5, W6, W7, W8, L1,
L3, L5, L7, RC, and CC. The supply voltage VDD, the reference
current source Ibias and the load capacitance CL are fixed.

Table I shows the range of design parameters. #sample is
the number of sampling points in each design parameter. In
this experiment, each of 12 design parameters has 32 sam-
pling points. So, the design space is 12-dimensional space,
and the total number of sampling points is about 1.1 × 1018

(260). The requirements are gain, power, unity-gain frequency
(UGF), output slew-rate, and input-referred noise.

- 34 -



TABLE I
Design parameters of the opamp.

Parameter min. max. #sample
Channel width W 1 µm 100 µm 32 (5 bit)
Channel length L 0.35 µm 1.0 µm 32 (5 bit)
Resistance RC 0Ω 2 kΩ 32 (5 bit)
Capacitance CC 0.15 pF 5.0 pF 32 (5 bit)
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Fig. 8. Number of samples versus computational time for volume calculation.

B. Volume Calculation by MCMC

First, we discuss the accuracy and computational time of
volume calculation by MCMC method. We use random-walk
sampling, so the estimated volume strongly depends on the
sample size. Fig. 8 shows the sample size versus the time.
The relationship is almost linear. Fig. 9 shows the relation-
ship between the sample size and the calculated volume. Since
MCMC method is a heuristic method, we tested 20 times at
each sample size. The error-bar shows the distribution in the
20 trials. As the sample size increases, the calculated volume
converges to 1.1 × 10−2, and the error-bar becomes shorter.
These results show that too small sample size causes estima-
tion error, but accuracy improvement by increasing the sample
size saturates. As shown in Fig. 8, the computational time is
almost proportional to the sample size. In this case, 30,000
samplings can obtain enough accuracy in about 5 minutes on a
5.2-GHz-clock/16-core/32-GB-RAM PC.

C. Relationship between Effectual Design Space and Perfor-
mance Requirement

We verify that the volume of the effectual design space can
be used as a measure of design difficulty. When a requirement
changes, the effectual design space changes and the volume
changes. Here, slack variable is not used. When the require-
ments change, the linear classifier is recreated. Fig. 10 and
Fig. 11 show the relationship between requirement and the vol-
ume. Please note that the y-axis is log-scale. In both cases of
the gain requirement and the UGF requirement, the volume
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Fig. 10. Gain requirement versus the volume.

changes monotonically against the requirement change. When
the power requirement is tightened from 100 µW to 25 µW,
the volume reduces in all range of the gain/UGF requirement.
These results show that the change of the volume is consistent
with the change of requirements, thus the volume of effectual
design space can be used as a measure of design difficulty.

D. Maximum Performance Exploration by Slack Variable

This subsection verifies that the slack variable if effective to
calculate the volume with changing requirements. Also, we
show the slack variable is useful to obtain the maximum per-
formance that the circuit topology can achieve in the process.

As shown in Fig. 6, slack variable S indicates the amount
of slide of linear classifier. It enables us to change require-
ment without recreating linear classifier. First, we evaluate the
relationship between the slack variable and the circuit perfor-
mance. After creating linear classifiers with a set of require-
ments, the borders are shifted according to the slack variable.
As the slack variable increases, the effectual design space be-
comes small. Samples inside the narrowed effectual design
space meet tighter requirements and achieve higher perfor-
mance. Fig. 12 shows the distribution of the gain inside the
effectual design space. As the slack variable increases, the
distribution shifts toward higher gain. This result shows that
sliding the borders by the slack variable can catch appropriate
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subspace corresponding with the effectual design space.
Then, we can estimate the point where the effectual design

space disappears. This point means that the maximum achiev-
able performance of the circuit. Without the slack variable, it is
difficult to find the point because it is difficult to catch enough
number of samples around this maximum performance point.

Fig. 13 is the results when a slack variable is applied to the
gain requirement. At S = 15 (power requirement < 25 µW)
and S = 20 (power requirement < 100 µW, the estimated vol-
ume becomes 1 × 10−17 at these points, the effectual design
space is assumed to be disappeared. Fig. 14 is the case of UGF.
Compared to Fig. 13, the effectual design space disappears at
S = 5 when the power requirement is < 25 µW. From these
results, the maximum UGF is strongly affected by the power
requirement.

To verify the results obtained by the slack variable, we com-
pare the results by a multi-objective optimization developed for
analog circuit design using NSGA-II (Non-dominated Sorting
Genetic Algorithms II) [9]. Trade-off curves obtained by the
proposed method and Ref. [9] are shown in Figs. 15–18. In all
trade-off curves among the gain, the power, the slew-rate, and
the input-referred noise, the results by the proposed method
and NSGA-II show good matching. This means that the pro-
posed method using slack variable captures the performance
limitation without re-training of linear classifiers.
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From discussion above, the slack variable is also useful to
evaluate how one performance requirement affects the limita-
tion of other performance measures.

V. Conclusion

This paper proposed a method to evaluate the volume of ef-
fectual design space of analog circuits. The volume of effectual
design space correlates design difficulty, but it is difficult to
obtain the volume because the effectual design space is a sub-
space in high-dimensional design space. We employed three
techniques for efficient volume calculation: (1) linear classi-
fier, (2) MCMC, and (3) slack variable. The proposed method
achieved quantification of design difficulty in practical compu-
tational cost. By using slack variables, we can find the max-
imum performance point of the circuit under design. Then,
we can evaluate quantitatively how one performance require-
ment affects the maximum point in other performance mea-
sures. The proposed method is useful at early stage of circuit
design, target specification determination, process selection.
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