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Abstract— Micro Electrode Dot Array-based Digital Microflu-
idic Biochip (MEDA) is a promising platform in biological and
medical applications, offering high flexibility in droplet-based op-
erations such as disease diagnosis, DNA analysis, and PCR testing.
To fully exploit its capabilities, fast and accurate droplet routing
is essential. In this work, we formulate droplet transportation
in MEDA as a flow network problem and propose a high-speed
algorithm that efficiently finds a minimum-time routing with low
computation cost. The algorithm first determines the shortest
routing time using maximum flow search, and then refines the so-
lution using minimum-cost flow optimization to reduce redundant
movements. The proposed algorithm enables efficient handling of
large-scale problems, contributing to improved experimental effi-
ciency of MEDA biochips.

I. Introduction

Digital Micro Fluidic Biochip (DMFB) is a biochip used in
biochemistry and medicine, and is utilized in various biochem-
ical applications such as disease diagnosis, genetic analysis,
PCR testing [1, 2]. DMFB consists of electrodes and a hy-
drophobic plane, and manipulates droplets by the principle of
electrowetting-on-dielectric (EWOD). This enables operations
such as droplet splitting, mixing, and parallel processing of
multiple droplets [3]. However, conventional DMFBs have
large limitations in droplet manipulation, and there have been
issues of practicality.

Micro Electrode Dot Array-based biochip (MEDA biochip)
is a biochip that has improved droplet manipulation by minia-
turizing an electrode cell to about one-tenth the size of conven-
tional ones [4, 5]. The MEDA biochip has microelectrodes of
several 𝜇m in diameter arranged in a square grid. By individu-
ally controlling the on/off states of these microelectrodes, it is
possible to deform droplets, move them diagonally, and perform
cell-by-cell routing operations. Improved droplet manipulation
enables flexible operations that are not feasible with conven-
tional biochips. Such enhanced control is expected to increase
experimental efficiency by enabling faster droplet routing and
scaling up the experiment size.

This paper addresses a droplet routing problem in a MEDA
biochip, where droplets are required to move from source cells
to target cells as quickly as possible while passing through
as few intermediate cells as possible. A droplet is assumed
to consist of multiple unit droplets. These unit droplets are
initially placed in the source cells and must be moved to the
target cells without overlapping with each other at any time. The

routing problem discussed in this paper is to find a minimum-
time routing of unit droplets from source cells to target cells,
using only available cells. Some cells in the MEDA biochip
are unavailable for routing due to contamination from other
droplets or hardware faults.

In recent years, various methods have been proposed to find
better droplet routing for MEDA biochips [6, 7, 8, 9, 10, 11].
Methods for DMFB treat a droplet as a single large entity
and search for a path for it to move as a whole. However,
these methods are difficult to apply to MEDA biochips, where
droplets can be divided and moved separately, and thus may
fail to obtain an optimal routing. On the other hand, methods
designed for MEDA biochips can find an optimal routing, but
their large computation times make it difficult to apply to large-
scale instances.

In this paper, we propose a method for MEDA biochips that
finds a minimum-time droplet routing in a short computation
time. In the proposed method, droplet routing is represented
by a flow in a 3D flow graph. The (x,y)-plane of the 3D flow
graph corresponds to a microelectrode array and the z-axis of
it corresponds to a time step allowed in the routing. In the
3D flow graph, each unit flow from its primary source to its
primary sink corresponds to the routing path of a unit droplet.
In a case that a feasible droplet routing exists, a feasible routing
is obtained if the number of layers of the 3D flow graph is set
large enough. The proposed method initially sets the number
of layers small, then iteratively increases it by one until the
paths of all unit droplets are completed in the corresponding
time steps.

II. Droplet Routing Problem

In biomedical tasks using a MEDA biochip, multiple droplets
are routed simultaneously across its microelectrode cells. In
a routing operation, each droplet placed at a source cell is
required to move to a designated target cell. To improve task
efficiency, droplet routing aims to minimize both the required
time and the number of cells involved in the movement.

In a MEDA biochip, the microelectrode cells are arranged in
a matrix of width 𝑤 and height ℎ. The cell map 𝑀 = {𝑐𝑥,𝑦 |
1 ≤ 𝑥 ≤ 𝑤, 1 ≤ 𝑦 ≤ ℎ} represents a microelectrode cell array
where 𝑐𝑥,𝑦 is the cell at coordinates (𝑥, 𝑦). Figure 1 shows an
example of a MEDA cell map.

On a MEDA biochip, droplets that occupy adjacent cells
physically form a single coalesced droplet. The required time
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Fig. 1 : An example of a MEDA cell map.

to move a coalesced droplet to adjacent cells depends on the
size and shape of the droplet, and a droplet split operation takes
even longer [12, 13, 8, 11]. However, in this work, droplets
are modeled by virtual unit droplets, each occupying a single
cell without coalescence. Also, it is assumed that the time step
for routing is set large enough to complete any single move
operation in which a unit droplet is moved to an adjacent cell.

In cell map 𝑀 , cells are categorized into a set of available
cells 𝐴(⊆ 𝑀) and a set of blocked cells 𝐵(= 𝑀 \ 𝐴). In cell
map 𝑀 , some cells may become unusable due to contamination,
damage, or other factors. Only the available cells in 𝐴 are used
for droplet routing. Let 𝐷 = {𝑑 (1), 𝑑 (2), . . . , 𝑑 (𝑛)} be the
set of unit droplets to be routed. At the initial state of droplet
routing, the unit droplets are placed in the source cells and are
required to reach target cells. The set of source cells is given
by 𝑆 = {𝑠(1), 𝑠(2), . . . , 𝑠(𝑛)} (⊂ 𝐴) where unit droplet 𝑑 (𝑖) is
placed at 𝑠(𝑖) (1 ≤ 𝑖 ≤ 𝑛). The set of target cells is given by 𝑇

(⊂ 𝐴) where 𝑆 ∩ 𝑇 = ∅ and |𝑇 | = |𝑆 |.
A droplet routing request is specified by the cell map

𝑀 (𝐴, 𝑆, 𝑇), where 𝐴, 𝑆, and 𝑇 denote the sets of available
cells, source cells, and target cells, respectively. In unit droplet
routing, each droplet either stays in the same cell or moves to
an adjacent cell in each step. The allowed movement directions
are vertical, horizontal, and diagonal.

When a unit droplet moves from cell 𝑐𝑥,𝑦 to cell 𝑐𝑥′ ,𝑦′

obliquely adjacent to 𝑐𝑥,𝑦, that is, 𝑥′ = 𝑥 ± 1 and 𝑦′ = 𝑦 ± 1,
then the droplet also passes cells 𝑐𝑥′ ,𝑦 and 𝑐𝑥,𝑦′ . An oblique
movement of a unit droplet is allowed only if all these cells are
available cells. A unit droplet movement from cell 𝑐𝑥,𝑦 (∈ 𝐴)
to cell 𝑐𝑥′ ,𝑦′ (∈ 𝐴) is allowed only if |𝑥 − 𝑥′ | ≤ 1, |𝑦 − 𝑦′ | ≤ 1,
and 𝑐𝑥′ ,𝑦, 𝑐𝑥,𝑦′ ∈ 𝐴.

Let 𝑃 = {𝑝(1), 𝑝(2), . . . , 𝑝(𝑛)} be the set of routing paths
of unit droplets where 𝑝(𝑖) is the routing path of unit droplet
𝑑 (𝑖) (1 ≤ 𝑖 ≤ 𝑛). At each step, each unit droplet exclusively
occupies one cell. Let 𝑐𝑡 (𝑖) (∈ 𝐴) be the cell occupied by unit
droplet 𝑑 (𝑖) at time step 𝑡. The routing path of droplet 𝑑 (𝑖)
is represented by 𝑝(𝑖) = (𝑐0 (𝑖), 𝑐1 (𝑖), . . .) where 𝑐0 (𝑖) = 𝑠(𝑖).
In a feasible routing of droplets, distinct droplets 𝑑 (𝑖) and
𝑑 ( 𝑗) (𝑖 ≠ 𝑗) occupy different cells at any time step 𝑡, that is,
𝑐𝑡 (𝑖) ≠ 𝑐𝑡 ( 𝑗).

A droplet routing path 𝑃 is evaluated by the time step
𝑡 (𝑃) = min{𝑡 | 𝑐𝑡 (𝑖) ∈ 𝑇,∀𝑐𝑡 (𝑖) ∈ 𝑝(𝑖) ∈ 𝑃}, which is

the earliest time step at which all unit droplets are at the tar-
get cells. All unit droplets starting from the source cells 𝑆

follow paths in 𝑃 and arrive at cells in 𝑇 at time step 𝑡 (𝑃).
The number of cells used in the routing 𝑃, which is given by
𝑐(𝑃) = |{𝑐𝑡 (𝑖) | 𝑐𝑡 (𝑖) ∈ 𝑝(𝑖) ∈ 𝑃}|, is also used to evaluate 𝑃,
serving as the secondary objective in this paper.

The droplet routing problem in this paper is defined as fol-
lows:

Droplet Routing Problem

Input: Cell map 𝑀 (𝐴, 𝑆, 𝑇).

Output: Droplet routing paths 𝑃 = {𝑝(1), 𝑝(2), . . . , 𝑝(𝑛)}.

Objective:

• Minimize 𝑡 (𝑃) = min{𝑡 | 𝑐𝑡 (𝑖) ∈ 𝑇,∀𝑐𝑡 (𝑖) ∈ 𝑝(𝑖) ∈
𝑃},

• and then minimize 𝑐(𝑃) = |{𝑐𝑡 (𝑖) | 𝑐𝑡 (𝑖) ∈ 𝑝(𝑖) ∈ 𝑃}|.

Constraints:

• 𝑐0 (𝑖) = 𝑠(𝑖),∀𝑖(1 ≤ 𝑖 ≤ 𝑛)
• 𝑐𝑡 (𝑖) ∈ 𝐴,∀𝑖(1 ≤ 𝑖 ≤ 𝑛),∀𝑡 (0 ≤ 𝑡)
• |𝑥 − 𝑥′ | ≤ 1, |𝑦 − 𝑦′ | ≤ 1, and 𝑐𝑥′ ,𝑦, 𝑐𝑥,𝑦′ ∈ 𝐴 where
𝑐𝑥,𝑦 = 𝑐𝑡 (𝑖), 𝑐𝑥′ ,𝑦′ = 𝑐𝑡+1 (𝑖),∀𝑖(1 ≤ 𝑖 ≤ 𝑛),∀𝑡 (0 ≤ 𝑡).

• 𝑐𝑡 (𝑖) ≠ 𝑐𝑡 ( 𝑗),∀𝑖, 𝑗 (𝑖 ≠ 𝑗),∀𝑡 (0 ≤ 𝑡)

III. 3D Flow Graph 𝐺 (𝑀, 𝑡max)

The 3D flow graph to find a unit droplet routing is de-
fined in terms of cell-map 𝑀 (𝐴, 𝑆, 𝑇) and time step 𝑡max as
𝐺 (𝑀, 𝑡max) = (𝑉, 𝐸), where 𝑉 = {𝑣𝑆 , 𝑣𝑇 } ∪ 𝑉i ∪ 𝑉o and
𝐸 = 𝐸𝑆 ∪ 𝐸𝑇 ∪ 𝐸io ∪ 𝐸m [10].

In flow graph 𝐺 (𝑀, 𝑡max), two vertices 𝑣𝑆 and 𝑣𝑇 are the
primary source and the primary sink, respectively, and an inflow
vertex in 𝑉i and an outflow vertex in 𝑉o are defined for each
available cell in 𝐴 and time step 𝑡. That is,

𝑉i =
{
𝑣i
𝑥,𝑦,𝑡 | 𝑐𝑥,𝑦 ∈ 𝐴, 0 ≤ 𝑡 ≤ 𝑡max

}
,

𝑉o =
{
𝑣o
𝑥,𝑦,𝑡 | 𝑐𝑥,𝑦 ∈ 𝐴, 0 ≤ 𝑡 ≤ 𝑡max

}
.

(1)

The primary source 𝑣𝑆 and the primary sink 𝑣𝑇 are connected
to the vertices corresponding to the source and target cells,
respectively.

𝐸𝑆 =

{(
𝑣𝑆 , 𝑣

i
𝑥,𝑦,0

)
| 𝑐𝑥,𝑦 ∈ 𝑆

}
is the set of directed edges that connect 𝑣𝑆 to the inflow vertex
of a source cell in 𝑆 at time step 0, while

𝐸𝑇 =

{(
𝑣o
𝑥,𝑦,𝑡max , 𝑣𝑇

)
| 𝑐𝑥,𝑦 ∈ 𝑇

}
is the set of directed edges that connect the outflow vertex of
a target cell in 𝑇 at time step 𝑡max to 𝑣𝑇 . The inflow vertex
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(a) 𝐺 (𝑀, 2) , |𝑆 | > |𝐹 | = 1. (b) 𝐺 (𝑀, 3) , |𝑆 | = |𝐹 | = 2

Fig. 2 : Maximum flow of 3D flow graph 𝐺 (𝑀, 𝑡max).

𝑣i
𝑥,𝑦,𝑡 and the outflow vertex 𝑣o

𝑥,𝑦,𝑡 of cell 𝑐𝑥,𝑦 at time step 𝑡 are
connected by an internal directed edge in 𝐸io. That is,

𝐸io =

{(
𝑣i
𝑥,𝑦,𝑡 , 𝑣

o
𝑥,𝑦,𝑡

)
| 𝑣i

𝑥,𝑦,𝑡 ∈ 𝑉i, 𝑣
o
𝑥,𝑦,𝑡 ∈ 𝑉o

}
. (2)

𝐸m is the set of directed edges that correspond to feasible
droplet movements in one time step. A feasible unit droplet
movement from cell 𝑐𝑥,𝑦 ∈ 𝐴 to cell 𝑐𝑥′ ,𝑦′ ∈ 𝐴 at time step 𝑡

is represented by
(
𝑣o
𝑥,𝑦,𝑡 , 𝑣

i
𝑥′ ,𝑦′ ,𝑡+1

)
∈ 𝐸m where |𝑥 − 𝑥′ | ≤ 1,

|𝑦 − 𝑦′ | ≤ 1, 0 ≤ 𝑡 ≤ 𝑡max − 1, and 𝑐𝑥,𝑦′ , 𝑐𝑥′ ,𝑦 ∈ 𝐴.
The capacity of each edge in 𝐸 is set to 1. A cell is occu-

pied by at most one unit droplet at each time step, which is
guaranteed by setting the edge capacity of each internal edge
to one.

Let 𝐹 be a flow of 𝐺 (𝑀, 𝑡max) from 𝑣𝑆 to 𝑣𝑇 that consists of
unit flows. Let

(𝑣𝑆 , 𝑣i
0 (𝑖), 𝑣

o
0 (𝑖), 𝑣

i
1 (𝑖), 𝑣

o
1 (𝑖), . . . , 𝑣

i
𝑡max (𝑖), 𝑣

o
𝑡max (𝑖), 𝑣𝑇 )

be the path from 𝑣𝑆 to 𝑣𝑇 in 𝐺 (𝑀, 𝑡max) where unit flow 𝑓 (𝑖)
in 𝐹 passes. The path of 𝑓 (𝑖) corresponds to the routing path
𝑝(𝑖) = (𝑐0 (𝑖), 𝑐1 (𝑖), . . . , 𝑐𝑡max (𝑖)) of unit droplet 𝑑 (𝑖) where in-
flow vertex 𝑣i

0 (𝑖) and outflow vertex 𝑣o
0 (𝑖) correspond to source

cell 𝑠(𝑖) where unit droplet 𝑑 (𝑖) is placed. Note that vertices
𝑣i
𝑡 (𝑖) and 𝑣o

𝑡 (𝑖) in the path are an inflow vertex and an outflow
vertex, respectively, that correspond to 𝑐𝑥,𝑦 ∈ 𝐴 for some 𝑥 and
𝑦 for any 𝑡. Unit flows in 𝐹 are internally disjoint, and they
correspond to a feasible routing of unit droplets.

The amount of flow |𝐹 | is at most |𝑆 | since the set of internal
edges that correspond to the set of source cells 𝑆 forms a cut
of size |𝑆 |. If the amount |𝐹 | of any flow 𝐹 is less than |𝑆 |,
then there is no routing of unit droplets 𝐷 within time step 𝑡max
(Fig. 2(a)). If the amount |𝐹 | is equal to |𝑆 |, then 𝐹 corresponds
to a routing of unit droplets 𝐷 within time step 𝑡max (Fig. 2(b)).

Algorithm 1 Flow-based Augmented Droplet Routing (FADR)
Require: Cell map 𝑀 (𝐴, 𝑆, 𝑇)

1: 𝑠← 𝑠(1) (∈ 𝑆)
2: 𝑡 ← min𝑐∈𝑇 Distance𝑀 (𝑠, 𝑐)
3: while True do
4: 𝐹 ← Maxflow(𝐺 (𝑀, 𝑡))
5: if |𝐹 | = |𝑆 | then
6: break
7: end if
8: 𝑡 ← 𝑡 + 1
9: end while

10: 𝐹 ← MincostMaxflow(𝐺 (𝑀, 𝑡))
11: 𝑃← UnitDropletPaths(𝐹)

IV. Proposed Method: Flow-based Augmented Droplet
Routing (FADR)

In this paper, we formulate the droplet routing problem as a
flow network problem and propose the Flow-based Augmented
Droplet Routing (FADR) method to find the path with the min-
imum routing time in a short computation time. This method
repeatedly finds a maximum flow of 3D flow graphs. In the
3D flow graphs except the final one, the amount of the maxi-
mum flows is less than the number of unit droplets to be routed.
This reduces the computation time per search, enabling faster
discovery of a minimum-time routing path.

The pseudo-code of the proposed FADR is given in Algo-
rithm 1. Given a cell map 𝑀 (𝐴, 𝑆, 𝑇) as input, FADR first deter-
mines the number of layers 𝑡. Then, the 3D flow graph 𝐺 (𝑀, 𝑡)
is constructed, and a max-flow search MaxFlow(𝐺 (𝑀, 𝑡)) is
performed on it. If the amount of flow 𝐹 found is less than
|𝑆 |, then 𝑡 is incremented by one, and the process is repeated
until a flow whose amount is equal to |𝑆 | is found. Then, a
minimum-cost max-flow search MincostMaxflow(𝐺 (𝑀, 𝑡)) is
performed to obtain an optimized flow 𝐹. Finally, the flow 𝐹

is converted into a set of unit droplet routing paths 𝑃 using the
function UnitDropletPaths(𝐹).

The initial number of layers 𝑡 should not be larger than the
minimum time steps required in the routing. Otherwise, FADR
fails to obtain a routing with the minimum time steps. If the
number of layers 𝑡 of a 3D flow graph is set to the maximum of
the distances from sources to their nearest target cell, then it is
always less than or equal to the required time steps and helps
minimize the number of iterations. However, obtaining that
value has a high computational cost. To simplify, the algorithm
selects one source cell 𝑠 ∈ 𝑆 arbitrarily and sets the initial 𝑡 to
the distance from 𝑠 to its nearest target cell 𝑐 ∈ 𝑇 , defined as
min𝑐∈𝑇 Distance𝑀 (𝑠, 𝑐). In this work, the distance is obtained
by using Dijkstra’s shortest-path algorithm [14].

In our FADR, MaxFlow(𝐺 (𝑀, 𝑡)) obtains a maximum flow
from 𝑣𝑆 to 𝑣𝑇 in 𝐺 (𝑀, 𝑡). In our implementation, the Ford-
Fulkerson method [15], where a unit-capacity augmenting path
is repeatedly found by Breadth-First Search (BFS), is used.
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(a) Weight of edges in 𝐸m. (b) Projection onto 2D map.

Fig. 3 : Edge weight assignment.

Its computation time is roughly proportional to the number of
unit flows found. Therefore, infeasible cases, as illustrated in
Fig. 2(a), finish searches faster than feasible ones (Fig. 2(b)).
Our FADR searches the infeasible region to reduce the total
computation time.

In FADR, in order to reduce the number of cells used during
the unit droplet routing, a minimum cost flow is searched by
assigning the weight to each edge in the 3D flow graph 𝐺 (𝑀, 𝑡)
as assigned in [10].

For an edge not in 𝐸m, the weight is set to 0. For an edge in
𝐸m, the weight is assigned to encourage droplets to reach target
cells earlier and to minimize the number of cells passed. The
weight assigned to an edge in 𝐸m is defined as follows:

𝑊 (𝑣o
𝑥,𝑦,𝑡 , 𝑣

i
𝑥′ ,𝑦′ ,𝑡+1)

=


0 if 𝑐𝑥,𝑦, 𝑐𝑥′ ,𝑦′ ∈ 𝑇,
1 if 𝑐𝑥,𝑦 ∉ 𝑇 ∨ 𝑐𝑥′ ,𝑦′ ∉ 𝑇, 𝑥 = 𝑥′, 𝑦 = 𝑦′,

2 if 𝑐𝑥,𝑦 ∉ 𝑇 ∨ 𝑐𝑥′ ,𝑦′ ∉ 𝑇, 𝑥 = 𝑥′ ⊕ 𝑦 = 𝑦′,

2 + 𝜖 otherwise,

(3)

where ⊕ denotes the exclusive-OR, and 𝜖 is set to 0.001 in
experiments. The edge weights assigned are illustrated in Fig-
ure 3.

The weight is set to 0 if the edge corresponds to a movement
among target cells and set to positive otherwise. The earlier
the droplet reaches the target cells, the smaller the total weight
corresponding to the movement is expected to be. For an edge
that corresponds to a movement that a droplet stays at a cell,
a horizontal or vertical movement, and an oblique movement,
the weight is set to 1, 2, and 2 + 𝜖 , respectively. These weights
prevent droplets from passing unnecessary cells. A stay is pre-
ferred to moving back and forth. A single oblique movement
rather than a vertical movement followed by a horizontal move-
ment is preferred. While one directional movement instead of
two oblique movements is preferred.

Let 𝐹 be a minimum cost flow of 𝐺 (𝑀, 𝑡) where |𝐹 | = |𝑆 |.
Let 𝑃 be the routing path corresponding to 𝐹. 𝑃 is a feasible
routing path of unit droplets 𝐷. The time step 𝑡 (𝑃), the number
of time steps required in the routing corresponding to 𝑃, is
expected to be small due to the weights assigned to edges, but
may not be the minimum to complete the routing if the number
of layers 𝑡 is set larger. Also, the number of cells 𝑐(𝑃) used in
the routing corresponding to 𝑃 is not minimum in general.

In our FADR, MincostMaxflow(𝐺 (𝑀, 𝑡)) finds a minimum
cost flow. In our implementation, the maximum flow found is
refined by the Bellman-Ford algorithm to minimize total edge
weights. Although the routing time 𝑡 (𝑃) remains unchanged in
FADR, this step reduces redundant movement and the number
of used cells 𝑐(𝑃).

V. Experiment

The performance of our proposed droplet routing FADR is
evaluated by experiments. The experiments were conducted on
a computer equipped with an Intel Core i7-8665U CPU and 16
GB of memory.

A. Experimental Setup

In this experiment, six types of benchmarks were used, com-
bining three map sizes (10 × 15, 20 × 30, and 40 × 60) with
two droplet sizes (1 × 1 and 3 × 3). For each case, 10 maps are
randomly generated. In all cases, the number of droplets is set
to 3. The number of obstacles |𝐵 | is set to 30, 120, and 480 for
smaller to larger map sizes.

Droplet size 3× 3, the number of droplets 3 means that there
are three clusters of droplets each occupying a 3 × 3 square
region. Thus, for droplet size 3 × 3 and the number of droplets
3, the number of unit droplets |𝐷 | is 27.

For each map, source and target cells of the specified cell ma-
trix size are randomly generated without overlap, and random
obstacles are designated from other cells. If there is no feasible
droplet routing in a generated map, the map is regenerated to
ensure only solvable maps are used in the benchmarks.

B. Experimental Results

The experimental results are summarized in Table I. For
each benchmark, droplet routing algorithm (DRA) [10] and
FADR were applied.

In DRA, minimum-cost maximum flows are repeatedly ob-
tained by gradually reducing the number of layers of the 3D
flow graph until no feasible droplet routing exists. The initial
number of layers is set large enough to ensure feasible droplet
routing. The number of layers in the next iteration is set one less
than the time step when all unit droplets arrive at target cells.
The initial number of layers was manually set to 15, 30, or 50
depending on the map sizes. DRA aims to reduce the number
of iterations as small as possible by finding a minimum-cost
maximum flow.

In the table, “#step” indicates the average of the minimum
time steps of droplet routing, and “time” indicates the average
computation time excluding the initialization, where “total”,
“maxF”, and “minC” are the total computation time, the com-
putation time for maximum flow searches, and the computation
time for minimum-cost search, respectively. “#rep” is the aver-
age number of flow searches.

In experiments, it is confirmed that the computation time
of FADR is 36% − 84% shorter than DRA. The computation
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TABLE I: Average computation time and the number of repetitions of flow search.

Benchmark DRA [10] FADR(Ours)
Map Droplet #step time #rep time #rep

Type size |𝐵 | size # |𝐷 | total [s] total [𝑠] (%) maxF [𝑠] minC [𝑠]
A-1 10 × 15 30 1 × 1 3 3 8.2 0.14 2.4 0.09 (64) 0.05 0.03 6.8
A-2 10 × 15 30 3 × 3 3 27 7.4 1.77 2.4 0.55 (31) 0.14 0.41 7.2
B-1 20 × 30 120 1 × 1 3 3 17.2 3.15 2.4 1.38 (43) 0.76 0.62 12.8
B-2 20 × 30 120 3 × 3 3 27 16.1 39.94 3.6 6.86 (17) 1.31 5.55 14.2
C-1 40 × 60 480 1 × 1 3 3 34.6 50.09 2.5 27.48 (55) 13.25 14.24 24.4
C-2 40 × 60 480 3 × 3 3 27 28.1 545.07 5.3 84.87 (16) 17.40 67.47 24.1

(a) DRA: Total time 26.02 sec (b) FADR: Total time 1.76 sec

Fig. 4 : Computation times for a map in B-2 where “#step” is
11.

time of FADR is much shorter than DRA, especially for 3 × 3
droplets. Although the number of repetitions of flow searches
in FADR is larger than that of DRA, the total computation
time of FADR is shorter since the computationally expensive
minimum-cost maximum flow search is only executed once in
FADR. This is also confirmed in Figure 4, which shows the
computation time of each flow search and the total computation
time of a map in benchmark B-2.

The total computation time of maximum flow searches in
FADR depends on the map size and the number of unit droplets.
However, in experiments, increasing the number of unit droplets
by nine times only increases the computation time up to three
times. The number of unit droplets does not significantly affect
the computation time in FADR.

The total computation time of the minimum-cost maximum
flow search in FADR also depends on the map size and the
number of unit droplets. In experiments, roughly speaking, it
grows proportionally with the number of unit droplets.

Examples of the routing paths obtained by FADR for the cell
map shown in Figure 1 are shown in Figure 5. The blue cells
represent the cells the unit droplets pass through, and the yellow
lines represent the routing paths of unit droplets. The width
of a yellow line in a cell is drawn proportional to the number
of unit droplets moving along the line. It is observed that two
droplets are split into unit droplets and eventually combined at
the target cell. Figure 5(a) and Figure 5(b) show the routing

results before and after applying the minimum-cost flow search
in FADR, respectively. Each corresponds to a minimum-time
routing, but redundant movements are reduced in Figure 5(b).

In FADR, the number of layers of the 3D flow graph is in-
creased by one if a maximum flow search fails, and the number
of repetitions of maximum flow searches increases according
to the map size. A further reduction of the number of flow
searches is a future challenge. The number of cells used in the
routing obtained by FADR is not necessarily the minimum. An
efficient reduction of the number of cells used is also among
our future challenges.

VI. Conclusion

This paper proposed a method, called FADR, that efficiently
finds a minimum time routing path of single type droplets. The
proposed FADR reduces the number of flow explorations and
finds a droplet routing path with the minimum routing time in
a short computation time. The proposed method is expected to
contribute to shortening the required time for experiments using
MEDA, thereby advancing the medical and chemical fields.

Future challenges include establishing a general routing strat-
egy that finds a routing of multiple types of droplets. To apply
our FADR method to multiple droplet routing, the cells used in
the routing of a unit droplet need to be further smaller. FADR
does not necessarily well minimize the number of cells used in
droplet routing.
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