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Abstract— This work investigates further signal integrity
issues in the InFO package, focusing on high-bandwidth memory.
Ensuring signal integrity is crucial in layout design to accommo-
date the increasingly complex modern circuit designs, particu-
larly in high-speed signal transmission. This research proposes
regression prediction models based on CatBoost, XGBoost, and
LightGBM to predict the values of signal quality indicators such
as eye height and eye width, providing a methodology to assess
signal integrity. In this work, we use the systematic method
of multi-layer modeling and angle simulation, signal integrity
in design has been quantitatively characterized and optimized.
Such a framework demonstrates high accuracy in evaluating
and optimizing signal integrity of InFO packages through rapid
evaluation.

I. INTRODUCTION

High-speed and high-density interconnect makes it neces-
sary to find new ways to ensure Signal integrity (SI) [1],
especially with the emergence of advanced electronic sys-
tems requiring high-speed system solutions. While SI has
become more important with advances in integrated circuit
(IC) technology, traditional methods for maintaining it are
falling short. As a result, learning-based methodologies have
become popular in solving the emerging problems of SI.

Several researchers have explored machine learning to
model and optimize high-speed channels. For example, [2]
demonstrated that deep neural networks (DNNs) outperform
support vector regression (SVR) in capturing the non-linear
characteristics of high-speed channels. Building on this, [3]
combined DNNs with genetic algorithms, significantly en-
hancing the efficiency of SI optimization. Further advancing
SI analysis, [4] introduced a semi-supervised hybrid neural
network (HNN) capable of accurately forecasting eye-diagram
metrics with minimal labeled data. Complementarily, [5] de-
veloped an anomaly detection system using machine learning,
which enabled automatic SI analysis even without detailed
circuit information.

Addressing the computational complexities in high-speed
channel design, [6] created an active subspace-based SVR
for rapid sensitivity analysis. In parallel, [7] investigated
AI/ML-infused PCB design systems, highlighting their utility

in enabling early-stage SI-compliant decisions. In the realm
of transmission line design, [8] introduced a lifelong learning
architecture for inverse design, offering a transformative ap-
proach to SI-aware design. Meanwhile, [9] explored the com-
bined challenges of SI and power integrity (PI) in advanced
packaging technologies. To further enhance SI, [10] proposed
a machine learning-based (DNN and CatBoost [11]) integrated
fan-out (InFO) routing flow that successfully improved SI on
HBM3 benchmarks.

While previous works have mainly focused on 1D routing
and high-speed channel modeling, this study targets the grow-
ing relevance of the InFO package in modern electronic de-
signs. This research proposes a new angle-bending multilayer
considered model for eye diagram indicators prediction. This
new method provided an improved evaluation of routing layout
quality, which is necessary whether the goal is to optimize
signal integrity in large or complex routing scenarios that may
be beyond the traditional SI modeling.

The proposed model is based on a multiple-layer staggered
shielding technique reinforced with an angle bending effect. It
is designed to be incorporated into SI simulation to improve
the accuracy of predicting eye width and eye height. This
enhancement enables better design of high-speed interconnects
in the InFO package, ensuring good SI performance over
complex layouts that demand an optimized interconnecting
routing strategy.

II. SIGNAL INTEGRITY ANALYSIS FOR HBM3 AND INFO
PACKAGE

Signal integrity (SI) is critical in modern high-performance
computing systems, especially in applications involving high-
bandwidth memory (such as HBM3) and integrated fan-out
(InFO) packaging (Fig. 1). The InFO technology offers sig-
nificant advantages by reducing RC delay and eliminating the
need for TSVs, thereby improving signal transmission at high
data rates. Recent advancements in machine learning methods,
particularly gradient boosting techniques like XGBoost and
LightGBM, have further enhanced the ability to predict and
optimize signal integrity metrics such as eye diagrams. This
section reviews related work in InFO packaging, SI optimiza-
tion, and machine learning frameworks.
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Fig. 1: Advanced packaging: InFO and HBM3.

Fig. 2: Eye diagrams (a) opened-eye (b) closed-eye.

A. Signal Integrity in InFO Packaging

InFO technology, a form of Fan-Out Wafer-Level Packag-
ing (FOWLP), has emerged as a critical enabler for high-
performance computing and mobile applications due to its
high interconnect density and bandwidth [12]. Using a fine
redistribution layer (RDL), InFO eliminates the need for
TSVs, commonly required in 3D integration, and significantly
reduces RC delay. These properties are crucial for signal
integrity in systems such as HBM3, where maintaining low
latency and high bandwidth is essential.

A recent study [12] has shown that InFO packaging provides
superior signal integrity, particularly in mitigating crosstalk, a
significant source of signal degradation at higher data rates.
The enhanced layout flexibility the fine RDL provides allows
for optimized routing, minimizing impedance mismatch, and
improving the eye diagram performance, a critical metric for
data transmission evaluation in SI. Fig.2 illustrates the impact
of optimized layouts on eye diagram performance, demon-
strating the difference between open and closed eye diagrams.
An opened-eye diagram indicates minimal interference and
better signal quality, whereas a closed-eye diagram suggests
significant distortion or noise.

B. Machine Learning for Signal Integrity Prediction

In recent years, machine learning methods such as gradi-
ent boosting have become powerful tools in predicting and
optimizing values, which is suitable for predicting SI in high-
speed interconnects. These methods, including XGBoost and
LightGBM, are particularly effective for handling complex
regression tasks involving SI indicators like eye height (EH)
and eye width (EW).

XGBoost [13] builds upon the traditional gradient boosting
tree (Fig. 3) by incorporating regularization terms to reduce
overfitting. This is particularly useful in SI problems, where
overfitting can lead to poor generalization across signal routing
configurations. Fig. 4 illustrates XGBoost.

Fig. 3: Gradient boosting.

Fig. 4: XGBoost.

Similarly, LightGBM [14] (Fig. 5), with its histogram-based
split search and leaf-wise growth strategy, offers faster training
times and reduced memory consumption, making it suitable
for large SI datasets.

Fig. 5: LightGBM.

Studies have demonstrated the effectiveness of these al-
gorithms in predictions, outperforming traditional regression
techniques in terms of both speed and accuracy. These methods
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Fig. 6: High speed circuit design: transmitter and receiver.

also enable the rapid evaluation of various layout configu-
rations, providing designers with valuable insights into how
signal routing affects SI.

C. Optimization Techniques for Signal Integrity

In addition to machine learning approaches, optimization
techniques are critical in improving signal integrity. The
Gurobi Optimizer [15] is widely utilized for solving complex
optimization problems, and it excels in handling mixed integer
programming and multi-objective optimization, making it suit-
able for applications that require minimizing SI degradation
while adhering to strict design constraints.

For instance, optimizing the layout of signal and ground
wires in InFO packaging involves balancing multiple objec-
tives, such as minimizing crosstalk and ensuring minimal
impedance mismatch. Gurobi’s ability to handle non-convex
objective functions and large datasets makes it a valuable tool
in SI optimization, allowing for fine-tuning layout parameters
to achieve optimal signal integrity.

III. MODEL CONSTRUCTION

This research addresses the critical issue of signal in-
tegrity (SI) in modern high-speed circuit designs (Fig. 6).
Routing layout parameters—such as spacing, angle, and wire
length—significantly influence key SI performance indicators
like eye height (EH) and eye width (EW), which are crucial
for evaluating signal quality. As circuit complexity increases,
accurately predicting these metrics becomes essential to avoid
signal degradation due to crosstalk, impedance mismatches, or
reflection. This work aims to develop predictive models capa-
ble of quantifying the impact of these layout parameters on
SI, enabling efficient optimization during the design process.

A. Signal Integrity Simulations

We conducted SI simulations using Keysight Advanced
Design System (ADS) software to evaluate the effects of
different layout configurations. The simulations focused on
single-layer and multi-layer structures and varying wire angles
to assess how electromagnetic coupling and geometric factors
affect signal quality.

• Multi-Layer Simulation:
We simulated signal transmission in multi-layer structures
(Fig. 7) to understand the impact of inter-layer electro-
magnetic coupling. We examined the signal interference
between layers and the shielding effects in double-layer
and triple-layer configurations.

• Angle Simulation:
We investigated how varying bend angles in transmission
lines with fixed and variable lengths influence EH and

Fig. 7: Multiple layers in signal transmission.

Fig. 8: Bend positions and angles.

EW (Fig.8). The objective was to understand how these
geometric parameters contribute to SI degradation and
guide optimal design.
– Same Length Simulation:

We consider the fixed lengths of the transmission lines
but that the transmission line’s angle changes with
different positions, i.e., (θ1, θ2, θ3). We attempted to
observe how these angle changes affect EH and EW
specifically.

– Different Length Simulation:
The simulation explores the effects of varying angles
on transmission lines with different lengths. By cross-
referencing these two variables, we can assess how
length and angle harmonize to influence SI.
This design leads to a better understanding of the
optimization for SI performance regarding transmission
line design, which will help specify the best layout for
maintaining high-quality signals.

B. Mixed-Integer Linear Programming (MILP) Model

We developed a mixed integer linear programming (MILP)
model to model the effect of layout parameters on SI math-
ematically. The formula incorporates factors such as spacing
(D), placement (P ), wire length (L), and relative angle (θ) to
predict EH. The equation is as follows:

EH = α0 +
∑
i,j

(αij ·Dij + βij · Pij + γij · Lij + δ · θ) + ϵ

(1)
Where:

• Dij represents the distance between signal lines and
surrounding lines,

• Pij denotes the relative positions of the signal lines,
• Lij is the wire length,
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Fig. 9: Training flow.

• θ is the bend angle,
• αij , βij , γij , δ are the optimized coefficients, and
• ϵ is the error term.

In this formulation, variables related to routing layer as-
signment are modeled as integers, while parameters such as
spacing (Dij), bend angle (θ), and wire length (Lij) are
continuous variables.

The MILP model is applied to determine the optimal com-
bination of routing layer selection, spacing, and angle values
that maximize the eye height (EH) under given physical and
design constraints. The integer variables correspond to discrete
routing and layer assignments, while continuous variables
capture geometric and electrical parameters.

The coefficients are optimized using Gurobi to minimize the
sum of squared errors (SSE), improving the accuracy of the
electromagnetic interference prediction.

The optimization problem can be described as follows:

minimize SSE =
∑

(EHobserved − EHpredicted)
2 (2)

C. Predictive Model Training

The predictive models were trained using data from dif-
ferent layout configurations (Fig. 9), including Ground-
Signal-Ground (GSG), Signal-Ground-Signal-Ground (SGSG)
(Figs. 10, 11, 12), and multi-layer structures. The dataset was
preprocessed using a robust scaler to standardize features,
followed by feature extraction based on layout properties such
as spacing, angle, and wire length.

Eq.(1) represents the optimization-based framework, while
the machine learning algorithms (CatBoost, XGBoost, Light-
GBM) form a separate predictive framework trained on sim-
ulation data to directly predict EH and EW.

We employed machine learning algorithms, including Cat-
Boost, XGBoost, and LightGBM, to develop predictive models
for EH and EW. These models underwent cross-validation to
ensure robustness, and their hyperparameters were fine-tuned
for optimal performance. By integrating SI simulations, MILP-
based formula modeling, and machine learning techniques, this
methodology provides a comprehensive approach to evaluating
and predicting signal integrity during circuit design.

Fig. 10: Layout configuration: GSG.

Fig. 11: Layout configuration: SGSG.

Fig. 12: Layout configuration: SGSGS.

Fig. 13: Double layer configurations.

Fig. 14: Triple layer configurations.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results of signal integrity (SI)
simulations conducted using ADS for various routing con-
figurations and layer structures (Fig. 15). We also evaluate
machine learning (ML) models for predicting eye height and
width, essential metrics for SI assessment, across different
transmission line layouts. Finally, we highlight the significance
of our method for efficient SI evaluation in IC design.

TABLE I: Summary of Datasets

GSG SGSG SGSGS 2 layer 3 layer

Spacing 1 O O O O O
Spacing 2 O O O O O
Spacing 3 X O O O O
Spacing 4 X X O X X
Category X X X 16 4
Datapoints 1404 4212 12636 4212 * 16 4212 * 4
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Fig. 15: Simulation eye diagram using ADS.

Fig. 16: Relationship of angles in different positions.

The dataset in Table I was generated by systematically
varying trace angles from 0◦ to 75◦ in 15◦ increments, trace
wire lengths from 500µm to 3000µm in 100µm increments,
and spacing between 2µm and 6µm in 2µm increments. Each
configuration was simulated in Keysight ADS using the same
HBM3 channel model.

A. Simulation Results

We performed SI simulations for routing configura-
tions—GSG, SGSG, and SGSGS—under single, double, and
triple-layer structures. The eye diagrams (Fig. 15) demonstrate
the variation in signal performance due to routing geometry.
Eye height (EH) and eye width (EW) were computed for each
scenario to quantify SI.

Key observations from the simulation include:
• Single Layer:

As seen in Fig. 10, Fig. 11, and Fig. 12, variations in
signal path spacing significantly impact both EH and
EW. GSG shows higher EH than SGSGS due to the
deteriorating shielding effects of the additional signal
lines.

• Double Layer:
Fig. 13 shows the shielding effect, where fully shielded
configurations have the highest EH due to minimal signal
crosstalk.

• Triple Layer:
As shown in Fig. 14, asymmetric configurations lead to

reduced EH, with the best performance in symmetric,
fully-shielded setups.

The correlation matrix in Fig. 16 reveals a moderate to
strong positive relationship between signal angles and EH,
confirming that geometric factors like angle and spacing
influence SI metrics.

B. Predictive Modeling Results

TABLE II: Evaluating Gurobi Formula Accuracy

Actual vs. Predicted GSG SGSG SGSGS Double layer Triple layer

R2 0.8739 0.8122 0.6159 0.7105 0.9084
Correlation 0.9348 0.9012 0.7848 0.8429 0.9531

TABLE III: Accuracy of Different Prediction Models

CatBoost[11] LightGBM XGBoost Gurobi

R2 MSE R2 MSE R2 MSE R2 MSE

GSG EH 0.9998 0.0006 0.9996 0.0008 0.9992 0.0012 0.8739 0.0002
EW 0.9459 0.1481 0.8305 0.2621 0.8222 0.2685 - -

SGSG EH 0.9998 0.0005 0.9995 0.0008 0.9992 0.0010 0.8122 0.0003
EW 0.9940 0.1812 0.9844 0.2924 0.9851 0.2857 - -

SGSGS EH 0.9992 0.0011 0.9989 0.0012 0.9989 0.0012 0.6159 0.0005
EW 0.9858 0.4442 0.9727 0.6149 0.9746 0.5934 - -

2 Layer EH 0.9998 0.0023 0.9998 0.0025 0.9998 0.0025 0.7105 0.0007
EW 0.9989 0.9946 0.9977 1.4214 0.9980 1.3325 - -

3 Layer EH 0.9987 0.0025 0.9985 0.0026 0.9986 0.0025 0.9084 0.0004
EW 0.9850 0.3425 0.9828 0.3665 0.9832 0.3614 - -

We developed predictive models using CatBoost, XGBoost,
LightGBM, and Gurobi Optimizer to estimate EH across the
datasets, including GSG, SGSG, SGSGS, double-layer, and
triple-layer configurations. As shown in Table. III, the machine
learning models exhibit high accuracy in predicting EH, with
CatBoost yielding the best performance.

Key findings include:

• CatBoost Performance:
Achieved an R2 of 0.9459 for EH prediction in the GSG
dataset, outperforming other models.

• Model Comparison:
Across datasets, CatBoost consistently outperformed XG-
Boost and LightGBM, while Gurobi’s formula-based
approach yielded lower accuracy, particularly for multi-
layer structures (Table. II).

To reduce overfitting, the dataset was split into 70% training,
15% validation, and 15% testing subsets, with the split per-
formed at the configuration level so that no identical parameter
combinations appear in more than one subset.

These results confirm that machine learning techniques
can accurately predict SI metrics, offering a quick evaluation
method for IC design.

C. Evaluating SI in Different Routing Stages

We evaluated SI performance in global and detailed routing
stages by calculating each bump’s mean absolute percentage
error (MAPE), focusing on EH and EW metrics. As an initial
step, we compared global routing with detailed routing, which
refines path and design rule constraints.
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MAPE(y, ŷ) =
1

N

N−1∑
i=0

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%

Detailed routing improves SI metrics by reducing deviations
in EH and EW, leading to better signal quality. It was par-
ticularly evident in the fully shielded configurations, where
the MAPE difference between global and detailed routing
highlighted the value of our method in minimizing routing
errors and improving design efficiency.

TABLE IV: Evaluating Eye Height(V) across Routing
Stages

Initial Stage (Global Routing) Final Stage (Detailed Routing) MAPE

Average Worst Best Average Worst Best Variations

Case1 0.816 0.792 0.818 0.824 0.799 0.848 1.045%
Case2 0.792 0.782 0.801 0.806 0.791 0.836 1.678%
Case3 0.839 0.833 0.845 0.845 0.834 0.849 0.694%
Case4 0.824 0.818 0.826 0.829 0.819 0.850 0.749%

TABLE V: Evaluating Eye Width(ps) across Routing
Stages

Initial Stage (Global Routing) Final Stage (Detailed Routing) MAPE

Average Worst Best Average Worst Best Variations

Case1 150.66 149.2 150.8 152.01 149.8 155.3 1.117%
Case2 149.24 149.0 149.6 149.54 147.1 153.9 0.967%
Case3 152.83 152.0 154.2 152.95 150.8 154.9 0.479%
Case4 151.17 150.8 151.3 152.32 150.4 154.0 0.940%

V. CONCLUSIONS

We have developed two machine learning-driven frame-
works to characterize signal integrity (SI) in the InFO package.
The first framework is an optimization-based model using
Gurobi Optimizer, which derives a formula to predict eye
height and provides a mathematical approach for signal in-
tegrity evaluation. The second framework is a CatBoost-based
predictive model, which achieves higher accuracy (R² = 0.94-
0.99) in predicting eye height and eye width by training a
predictive model using CatBoost.

Even when the ML models were trained on datasets gener-
ated from continuous-variable without integer constraints, the
prediction accuracy remained high (R² above 0.94), indicating
that the strong performance is due to the chosen feature set
and modeling capability rather than integer rounding effects.

The angle information enhances the model’s accuracy and
develops a comprehensive framework for estimating signal
integrity, considering various physical features such as wire
length, spacing, and multi-layer structures. Our models showed
reliable performance on simple single-layer structures and
complex multi-layer layouts, allowing fast signal quality eval-
uation and early detection of possible defects in data trans-
mission.
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