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Abstract— The motif extraction is a problem to

find similar substrings, called motifs, from many DNA

sequences. The Gibbs sampling is the best known

heuristic for this problem, but it has a disadvantage

that it tends to fall into a local optimum because so-

lution search space is limited due to its greedy search.

This paper proposes a heuristic that uses Random

Forests to classify substrings and performs a wide

range of solution search. Since the proposed heuristic

improves precision of solutions significantly, this paper

also proposes a hybrid method combining the Gibbs

sampling with the Random Forest based method to

reduce computation time while keeping the precision

of solutions.

I. Introduction

In the field of bioinformatics, it is assumed that com-
mon or similar substrings, called motifs, among DNA se-
quences have same or similar characteristics, structures,
and functional roles. Thus, finding such motifs is an es-
sential problem in applications such as biological classi-
fication and virus antibody detection. This problem is
also known as the motif extraction [1]. Since the number
of DNA sequences and their length are large, a method
finding motifs quickly and precisely has been required.
The motif extraction belongs to the class of NP-hard

problems and is too hard to solve the problem by ex-
act solution methods. Therefore, heuristic methods are
necessary, and the Gibbs sampling (GS) [2] is the best
known heuristic for this problem. The GS can find a so-
lution with a certain degree of precision in a short time.
On the other hand, it has a disadvantage that it tends to
fall into a local solution because solution search space is
limited due to its greedy search. However, improving the
precision of solutions is hard, and thus, it has been hard
to beat the GS. Although there exist its variants in im-
plementation [1, 3, 4, 5], its algorithm remains basically
unchanged.
To make a new breakthrough, this paper proposes a

heuristic method using Random Forests (RFs), an ensem-
ble machine learning, for the motif extraction. This is be-
cause their learning speed is fast, and RFs can efficiently
classify data without labels (i.e., unsupervised learning is
possible). In this paper, the method using RFs is called

Random Forest motif search (RFMS). The RFMS uses
RFs to classify similar substrings in given DNA sequences
in advance. Thereby, it efficiently narrows down candi-
dates and extracts promising substrings. Experimental
results show that the proposed heuristic method improves
precision of solutions significantly, compared to the exist-
ing GS, in a reasonable computation time.

The RFMS obtains higher precision solutions, but has
a disadvantage requiring longer computation time than
the GS. To reduce computation time while keeping the
precision of solutions, this paper also proposes a hybrid
method combining the GS with the RFMS. Additional
experimental results show that the hybrid method takes
advantages of the GS and the RFMS, and it is promising.

II. Preliminaries

A. Formulation of Motif Extraction

This section formulates the motif extraction. A motif
is defined as a set of substrings common or similar among
the given biological sequences, such as DNA sequences or
amino acid sequences. Fig. 1 shows an example of a motif.
To evaluate the similarity among substrings, Equation (1)
is often used.

E =
1

L

L∑
j=1

∑
ω∈Ω

fj(ω) log2
fj(ω)

p(ω)
(1)

In Equation (1), Ω is the set of characters composing
biological sequences. p(ω) is the background probability
of the character ω that ω appears in the set of biological
sequences. Similarly, fj(ω) is the occurrence probability
of the character ω that ω appears at the j-th position in
the set of extracted substrings with the length L.

The motif extraction is formalized as follows: Given
a set of biological sequences S = {s1, s2, ..., sn} and
the length L of motif to be extracted, find a motif
M = {m1,m2, ...,mn} maximizing Equation (1), where
the length of each substring mi is L. For simplicity, this
paper assumes that the length of all the given sequences
is equal, and they have no gaps. We also assume that
the given sequences are DNA sequences, and thus, the
character set Ω = {A, T,G,C}.
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Fig. 1. Example of a motif

Fig. 2. Overview of the Gibbs sampling

B. Gibbs Sampling

B.1. Algorithm

The GS begins with randomly selecting a set of substrings
of length L from given sequences as an initial solution.
Then, it heuristically searches for the set of substrings
maximizing Equation (1) while updating the solution by
shifting each substring in a sequence in turn. The same
process is iterated for a specified number of times. A part
of the overview of the GS is shown in Fig. 2.
The following is the process flow of the GS.

1. Randomly select a substringmi of length L from each
sequence as an initial solution (i = 1, 2, . . . , sn).

2. For each sequence si, iterate the Steps 3 to 5 for a
specified number of times U .

3. For each position from the 1st to the (|si| −L+1)th
in si, extract a substring and compute Equation (1)
along with other fixed substrings of other sequences,
where |si| is the length of sequence si.

4. Among substrings extracted in the Step 3, let the
substring maximizing (1) be a new candidate motif
mi in si.

5. If the value of (1) does not change for a certain num-
ber of iterations before reaching the specified number
of times U, proceed to the Step 6.

6. Output the obtained motif M and the value of (1),
then terminate.

B.2. Features of the Gibbs Sampling

The GS can find a motif heuristically even from a huge
number of long biological sequences in a short time. How-
ever, it tends to fall into a local optimum or not to con-
verge sufficiently with respect to precision of solution.

This is because its search space of solutions is limited
due to its greedy search.
As shown in the previous subsection, the GS greedily

searches for solutions based on Equation (1) without al-
lowing any changes to worse solutions, and it searches
by shifting only one substring in a sequence while fixing
others. Thus, its search space of solutions tends to be
limited. To overcome the drawbacks, some studies [4][5]
have been reported. Although they improve the precision
of solutions by re-selecting initial solutions or enforcedly
changing solutions to climb out of a local optimum, they
do not still reach a breakthrough. Therefore, more effec-
tive methods are required, and searching a wider solution
space is still regarded as a potentially beneficial approach
to achieve better results than GS.
This paper proposes a method using RFs as a com-

pletely different approach than previous ones.

C. Random Forest

RF [6][7][8][9][10][11] is a supervised ensemble machine
learning in which multiple weak learners are combined
in parallel to form a strong learner. A RF consists of
multiple decision trees (DTs), and each DT is trained in-
dependently.
The learning and inference of RFs are shown in Figs. 3

and 4, respectively. In the learning phase, a DT is con-
structed from each subset of the given dataset, as shown
in Fig. 3. A subset is randomly sampled from the given
dataset with correct labels. Each subset is then parti-
tioned recursively by each node using an attribute of data
and its threshold value into smaller subsets. Finally, leaf
nodes of a DT has the partitioned subsets with labels.
The same process is repeated n times to construct n DTs.
It is known that by selecting subsets and attributes ran-
domly, DTs are independent each other, resulting in high
quality of results [12].
In the inference phase, as shown in Fig. 4, the con-

structed DTs are used to predict the result for unknown
data (data without labels). According to attributes of
the unknown data, all the DTs are traversed by select-
ing an appropriate edge at each node from root nodes to
leaf nodes. Then, the final result is predicted by majority
voting among the labels extracted from the reached leaf
nodes (in Fig. 4, the result is ”A”). In general, majority
voting is used for classification tasks, and an average is
taken for regression tasks.

III. Proposed Heuristic

A. Random Forest Motif Search (RFMS) Method

A.1. Overview of RFMS

To overcome the disadvantage of the GS, it is necessary
to search wider space of solutions efficiently. Therefore,
RFMS uses RFs to coarsely classify similar substrings in
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Fig. 3. Learning of Random Forest (constructing trees)

Fig. 4. Inference of Random Forest (traversing trees)

biological sequences in advance. Then, it finds the most
similar substring in each sequence among classified sub-
strings. Fig. 5 shows an overview of the RFMS. In the
learning phase, a RF is constructed for each sequence si
that classifies substrings randomly sampled from each se-
quence si. In the inference phase, for each substring in si,
similar substrings in other sequences than si are searched
in parallel using their RFs constructed in the learning
phase. Among the obtained sets of substrings, one maxi-
mizing Equation (1) is selected as the motif, and then the
selected set is output. The following subsections describe
each phase in detail.

A.2. Learning Phase

As described in A.1, in the learning phase, substrings are
randomly sampled from each sequence si and are classified
to construct a RF for each si. To construct a DT in a RF,
the set of sampled substrings is recursively divided into

Fig. 5. Overview of RFMS

Fig. 6. Classification of substrings by a decision tree

two similarly sized subsets at each node of the DT by
a randomly selected attribute (feature) of substrings and
its threshold value. In this paper, the attribute is the
number of characters contained within a specified range
of substrings.
Fig. 6 shows an example of a DT classifying 5 sub-

strings: ”CACAC”,”ATGGA”,”CGCAT”,”ATGTT” and
”GTATT”. At the root node, the 3rd character as the
border, the right of this border as the range, ‘T’ as the
character, and 2 as the threshold are selected, and they
are used to divide the substrings. If the number of occur-
rences of the character ”T” within this range is smaller
than the threshold of 2, the substrings are classified into
the left node; otherwise, they are classified into the right
node. Similarly, ”CACAC”,”ATGGA”,”CGCAT”, which
are classified into the left node, are classified again by the
5th character, the left of the border, ‘C’, and 1. After
constructing the DT, sets of coarsely classified substrings
are obtained at leaf nodes. Note that substrings at leaf
nodes have no labels. That means this is a unsupervised
learning.
The following is the algorithm for the learning phase.

1. Repeat the Step 2 for each sequence si (i=1,2,. . . ,n).

2. Repeat the following steps a to c to create m DTs.

a. Randomly extract r substrings of length L from
si and let the set of substrings be px (x =
1, 2, . . . ,m)

b. Randomly select l of d attributes to divide px,
where l is the floor of

√
d.

c. Using one of the l attributes at each node, px
is recursively divided until either the tree depth
reaches the specified number maxdepth or the
number of substrings at leaf nodes reaches the
specified number size.

A.3. Inference Phase

Fig. 7 shows an overview of the inference phase in the
RFMS method. The RFMS begins with extracting a sub-
string t of length L from a sequence si one by one. Then,
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it searches for substrings similar to each t in sequences
sj ’s other than si, respectively. This is done by travers-
ing RFs for sj ’s. Fig. 8 shows the search method for a
substring similar to t using a RF for sj . In a RF, m DTs
are traversed according to t, and then, the most similar
substring to t among substrings classified in leaf nodes is
extracted. In this way, n− 1 substrings in sj ’s similar to
each t are extracted as a motif candidate.
Since Equation (1) computes the similarity among the

whole set of n substrings, it should be modified as fol-
lows to compute the similarity between two substrings
appeared in the above process.

E′ =
1

L

L∑
c=1

∑
ω∈Ω

f ′
c(ω) log2

f ′
c(ω)

p′(ω)
(2)

The flow of the computation of E′ is shown in Fig. 9.
Unlike Equation (1), Equation (2) uses the background
probability p′(ω) and the occurrence probability f ′

c(ω)
computed from only two targeting sequences (si and sj)
and two substrings, respectively.
The following is the algorithm for the inference.

1. Repeat the following steps a and b for each sequence
si (i = 1, 2, . . . , n) to extract a set of n substrings
that is the best solution in inference for si.

(a) Repeat the following steps i and ii for each sub-
string tk of length L in si from the 1st to the
(|si| − L+ 1)-th.

i. Search for the most similar substring to tk
in each of sequences sj ’s other than si using
a RF for sj and Equation (2) to obtain a set
of n− 1 similar substrings.

ii. Compute Equation (1) in the set of n sub-
strings including tk (i.e., a motif candidate).

(b) Among the |si| − L+ 1 substring sets obtained
by the step (a) (repetition of the steps i and ii),
select the substring set with the maximum value
of (1) as the best solution for si.

2. Among the n substring sets, each of which is the best
solution in each si, obtained in the above, output one
with the maximum value of (1) as the solution of the
algorithm.

B. Hybrid Method

As will be shown later, the RFMS successfully improves
the precision of solutions. However, it requires a longer
computation time than the GS. Although it is a reason-
able computation time, faster computation would be bet-
ter in various applications. To reduce computation time
while keeping the precision of solutions, this section pro-
poses a hybrid method combining the GS with the RFMS.
As shown in Section A, the RFMS can efficiently per-

form global search of solutions, but it does not perform

Fig. 7. Overview of inference

Fig. 8. Search for the most similar substring to t

local search of solutions (i.e., improvement by detailed
search of neighbors). This is because searches in the
RFMS are based on coarse classification of randomly sam-
pled substrings. To cover the effects expected in local
search by the RFMS, more sampled substrings and more
DTs for a RF are needed, resulting in a longer computa-
tion time.

On the other hand, the GS is good at local search of
solutions, although its search space of solutions is rela-
tively narrow due to its sequential search of neighbors.
Therefore, the proposed hybrid method achieves faster
computation while keeping the precision of solutions by
taking advantages of both search methods. Specifically,
the hybrid method globally searches for a promising so-
lution by the RFMS, and then, it improves the precision
of the obtained solution greedily by the local search of
the GS. Fig. 10 shows an overview of the hybrid method.
As shown in Fig. 10, it begins with producing a set of
substrings with the maximum value of (1) (promising so-

Fig. 9. Computation flow of Equation (2): E′
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Fig. 10. Overview of hybrid method

lution) by the RFMS. Then, considering the set of sub-
strings as an initial solution for the GS, the precision of
the solution is improved by the GS.
The following is the algorithm of the hybrid method.

1. Perform the learning phase and the Step 1 of the
inference phase in the RFMS to extract the best so-
lution ei in the inference for each si (i = 1, 2, . . . , n).

2. Select the solution with the maximum value of (1)
among ei’s.

3. Set the selected solution as an initial solution, and
then, perform the Steps 3-5 of the GS to improve it.

4. Output the improved solution as the solution of the
algorithm.

IV. Experiments and Evaluations

A. Experiment Environments

In the experiments, the GS, the RFMS, and the hybrid
method are implemented in C and compared. The exper-
imental environments are as follows: CPU: AMD Ryzen 7
3700U with Radeon Vega Mobile Gfx 2.30GHz, memory:
8.00GB, C compiler: gcc (optimization option: -O2). As
the experimental data, we use the Homo sapiens DNA se-
quence dataset (length of each sequence: 300, number of
sequences: 50) [13]. To evaluate the quality of obtained
solutions by the three heuristics (how far obtained ones
are from the exactly optimum solution) precisely, we em-
bedded the identical substring with length L into each
sequences of the above data intentionally. The value of
Equation (1) gets the maximum only when the embed-
ded substrings are found as the motif. This means they
are the exact solution. Experiments are performed 10
times for each of motif lengths L = 5, 10, 15, 20, 25, and
30. Section B shows the average values of (1) and average
computation times in the 10 experiments.

B. Experimental Results and Discussion

B.1. Gibbs Sampling

In this experiment, the maximum number of iterations for
the GS is set to 5, 000. However, as shown in the algo-

TABLE I
Experimental results of Gibbs sampling

L
Value
of (1)

Exact
value*

Computation
time in sec.

5 1.64 2.02 3.26
10 1.23 1.99 7.09
15 1.24 2.00 10.24
20 1.36 1.99 13.31
25 1.36 1.98 17.12
30 1.43 1.98 19.69
*Exact value denotes the value of (1)
for exact solution.

rithm of the GS, it can terminate in even fewer iterations
if no improvement of solution is obtained during several
iterations. In that case, we can consider that the obtained
solution falls into a local optimum. Table I shows results
of the GS.

From Table I, we can see that the GS finds a solution
quickly even when L is large. However, the difference
between the value of (1) for the obtained solution and
that for the exact solution is large. This means that the
obtained solutions are local optimum (i.e., there is much
room for improvement).

B.2. RFMS

In the experiment for the RFMS, the number of substrings
to be randomly sampled for a DT is 30, the number of
DTs in a RF is 25 or 50, the number of substrings at each
leaf node is up to 5, and the maximum height of DTs is
7. Tables II and III show the results when the number of
DTs is 25 and 50, respectively.

Table II shows that the RFMS obtains solutions closer
to the exact ones than the GS at the expense of computa-
tion speed. In addition, from Table III, we can see that by
using more DTs, the RFMS finds even the exact solutions.
A breakdown of computation time for the RFMS shows
that longer time is spent for traversing RFs during the
inference phase, rather than for constructing them during
the learning phase.

In this way, the RFMS improves the precision of solu-
tions significantly in a reasonable computation time.

B.3. Hybrid Method

In the experiment for the hybrid method, parameters for
the RFMS are the same as the previous experiment, and
the maximum number of iterations for the GS is only 10.
Table IV shows the experimental results of the hybrid
method.

Table IV shows that the hybrid method obtains almost
exactly optimum solutions in a computation time compa-
rable to the RFMS with 25 trees. These good results are
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TABLE II
Experimental results of RFMS with 25 trees

L
Value
of (1)

Exact
value

Computation time (sec.)
Learning Inference

5 1.99 2.02 0.02 40.46
10 1.86 1.99 0.03 71.56
15 1.89 2.00 0.03 97.36
20 1.83 1.99 0.04 124.51
25 1.86 1.98 0.04 160.77
30 1.87 1.98 0.04 185.73

TABLE III
Experimental results of RFMS with 50 trees

L
Value
of (1)

Exact
value

Computation time (sec.)
Learning Inference

5 2.02 2.02 0.04 89.90
10 1.99 1.99 0.05 154.35
15 2.00 2.00 0.06 216.36
20 1.99 1.99 0.07 274.73
25 1.98 1.98 0.07 330.45
30 1.98 1.98 0.07 379.41

achieved due to efficient global search by the RFMS and
fast local search by the GS.
Results with similar quality might be obtained even

faster by using the RFMS with fewer trees and the GS
with more iterations. We believe that there exists an op-
timal balance between the computational loads of RFMS
and GS, and our future work includes discovering such a
balance.

V. Conclusion

In this paper, we proposed a new heuristic method us-
ing a machine learning, RFs, to solve the motif extraction
problem. It can find high precision solutions by classifying
similar substrings and searching for solutions efficiently
using RFs. We also proposed a hybrid method combining
it with the GS to reduce computation time while keep-
ing the precision of solutions. Experimental results show

TABLE IV
Experimental Results of Hybrid Method with 25 trees

L
Value
of (1)

Exact
value

Computation time (sec.)
RFMS Gibbs sampling

5 2.02 2.02 41.77 0.12
10 1.99 1.99 70.94 0.22
15 2.00 2.00 108.28 0.31
20 1.98 1.99 131.75 0.41
25 1.97 1.98 160.74 0.51
30 1.97 1.98 189.34 0.61

that the proposed methods are promising to make a break-
through.
Future works include reducing the inference time in the

RFMS, tuning hyperparameters, finding the optimal bal-
ance between global search and local search, and applying
the RFMS to larger practical biological data.
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