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Abstract— Multi-level modulation formats such as

quadrature amplitude modulation (QAM) have been

widely used in modern wideband communications.

QAM waveforms are distorted by various influences

during communication. To learn the distortion trends

in the QAM waveform accurately, this paper first fo-

cuses on generating datasets for QAM communica-

tions. The paper then proposes a method for equaliz-

ing QAM waveform distortion with a support vector

machine (SVM) classifier which identifies the received

QAM code based on pre-learned distortion trends.

Simulation results obtained for our SVM classifier de-

signed as a dedicated digital circuit demonstrate that

the proposed method reduces the computational cost

by 80% compared to existing methods that achieve the

similar classification accuracy. We also confirmed that

the classification accuracy was improved from 96.4%

to 99.0% at 1.4 times the computational cost com-

pared to one of the simplest existing SVM classifiers.

I. Introduction

With the advent of 5G and 6G, telecommunications
networks must support a wide range of emerging services,
such as extended reality, digital twin, massive communi-
cation, and fixed wireless access (FWA), while ensuring
complex quality-of-service (QoS) requirements. As these
communications services become more widespread, net-
work traffic is growing rapidly, making it necessary to fur-
ther expand the capacity of networks in a sustainable and
economical way. To meet the growing demand for high-
capacity data communications, higher-order quadrature
amplitude modulation (QAM) formats have attracted
widespread attention. However, high-order QAM makes
the constellation much denser, which makes it very sen-
sitive to the nonlinear distortion. Thus, the correct de-
tection of high-order QAM at the receiver side is usually
very difficult due to the nonlinear distortion. Recently,
digital signal processing based on machine learning (ML)
has been extensively studied for equalization and demodu-
lation of broadband communications systems [1]. Despite
its potential, progress in ML technologies in the field of
network communications has been slowed by limited avail-
ability of high-quality, publicly accessible datasets [2].

With this background, this paper first focuses on gen-
erating datasets for ML applications such as ML-based
equalization of QAM symbols. QAM is a multi-level mod-
ulation format that encodes information using both am-
plitude and phase. It combines two orthogonal carrier
waves that are modulated independently in amplitude to
transmit data efficiently. For example, 16-QAM encodes
4 bits per symbol, representing 16 discrete values (i.e.,
00002 to 11112). To accurately understand the waveform
distortion in QAM communications, we design a QAM
transceiver model and use it to generate datasets for QAM
communications using a commercial optoelectronic circuit
simulator. In the dataset generation, we consider phase
and amplitude modulation noises with the model to re-
flect the actual situation of QAM communications.
This paper next proposes a method to equalize QAM

waveform distortion with a support vector machine
(SVM) classifier. SVM is one of the most studied su-
pervised ML models. It is based on the max-margin algo-
rithm that maximizes the margin of the two classes in the
training dataset. SVMs are broadly divided into linear
SVMs and nonlinear SVMs. Nonlinear SVMs need to cal-
culate the dot product of all support vectors and the input
during classification. Therefore, they need a large amount
of calculations while improving classification accuracy [3].
In this paper, prioritizing area and energy efficiency, we
propose a method based on the linear SVM. It uses the
boundary created by concatenating line segments on the
I-Q plane to classify each bit value of the received QAM
symbol into two classes (i.e., 1 or 0). HDL-based simu-
lation results obtained for our SVM classifier designed as
a dedicated digital circuit demonstrate that the proposed
method reduces the computational cost by 80% compared
to existing methods that achieve the similar classification
accuracy. We also confirmed that the classification accu-
racy is improved from 96.4% to 99.0% at the cost of a 40%
increase in the number of MAC operations compared to
one of the simplest existing SVM classifiers.
The remainder of the paper is organized as follows; Sec-

tion II summarizes previous works related to equalization
of QAM waveform distortion and generation of machine
learning datasets for QAM communications. Section III
presents the details of our approach to generating machine
learning datasets that help improve the accuracy of QAM
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equalization. Section IV proposes a linear SVM-based
method for decoding QAM symbols. Section V shows the
experimental results obtained using a HDL-based hard-
ware simulator. Section VI concludes this paper.

II. Related Work

A. Realistic Dataset Generation for Wireless Modula-
tion Classification

In [4], the authors propose RML22, a benchmark
dataset designed to address limitations in previous
datasets such as RML16. By correcting issues related to
channel modeling, artifact application order, and signal
parameterization, RML22 achieves a 23% accuracy im-
provement in modulation classification tasks. The study
adopts a data-centric approach, emphasizing the impor-
tance of realistic signal simulation and systematically an-
alyzing the effects of channel, clock, and noise artifacts
on classification performance.

B. Voting-Based Deep Convolutional Neural Networks
(VB-DCNNs) for M-QAM and M-PSK Signals Clas-
sification

In [5], a deep learning-based automatic modulation
classification (AMC) approach is proposed using a voting-
based DCNN (VB-DCNN) to identify M-QAM and M-
PSK signals. By simulating modulated waveforms and
transmitting them through fading channels with addi-
tive white Gaussian noise (AWGN), a large and diverse
dataset is generated. The dataset is then split into train-
ing, validation, and testing subsets to train multiple CNN
instances. Notably, the paper highlights that high clas-
sification accuracy (up to 99.7% for 16-QAM) is achiev-
able even under noise, showcasing the effectiveness of ma-
chine learning models when supported by rich and well-
structured datasets. This underscores the critical role of
synthetic waveform generation in advancing data-driven
equalization and classification systems.

C. Modulation Recognition Based on Constellation Di-
agram for M-QAM Signals

In [6], the authors propose a non-cooperative modu-
lation recognition method for M-QAM signals based on
constellation diagram clustering. By estimating param-
eters such as carrier frequency and baud rate directly
from the received signals and applying K-means cluster-
ing to reconstruct the constellation diagram, the method
achieves high recognition accuracy without prior infor-
mation. Crucially, this work demonstrates the feasibility
of extracting modulation features from noisy constella-
tions to classify signal types like 16-QAM, 32-QAM, and
64-QAM, underscoring the value of clean and structured
datasets for training machine learning models in signal
classification and equalization tasks.
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Fig. 1. Optical transceiver circuit used in optoelectronic circuit
simulator for machine learning dataset generation.

III. Machine Learning Dataset Generation

A. QAM Optical Transceiver

Our approach to generating QAM datasets for ma-
chine learning applications is based on circuit simulation
of QAM optical transceivers. We use a commercial op-
toelectronic circuit simulator for the dataset generation.
Figure 1 shows an example of the optical QAM transceiver
circuit used in the simulation. DAC in Fig. 1 represents
a digital-to-analog converter. It converts the digital I-Q
inputs into analog signals to control the Mach-Zehnder
Modulator which modulates the optical signal generated
by the laser diode in the transmitter circuit. The up-
per and lower Mach-Zehnder modulators generate optical
modulation signals independently. After the modulation,
the upper signal remains in-phase (I), and the lower sig-
nal shifts its phase by π/2, or 90 degrees (Q). These two
optical signals are then combined by an optical power
combiner and sent to the optical fiber.
The receiver circuit shown in Fig. 1 is based on a typical

homodyne receiver structure. The optical signal incoming
from the optical fiber is first divided into the two signals.
The local optical signal generated by the laser diode in
the receiver side is also divided in two. One of the di-
vided local signals is phase shifted by π/2. The locally
generated two signals are mixed with the two divided in-
coming signals, respectively. The mixed signals are then
converted into electrical signals (i.e., I and Q) by the
balanced photo-detectors. The balanced photo-detectors
subtract the converted photo-currents from each other,
resulting in the cancellation of common mode noise.

B. Noise and Interference in QAM Transceivers

The I and Q signals generated in the transmitter cir-
cuit are inherently correlated since these signals are gen-
erated from the same laser source. If there is noise in
the laser source, it will be copied to both the optical I
and Q signals. Since the same driver circuit shown in
Fig. 1 is used to control the modulator, there is a tem-
poral correlation between successive signal waveforms in
the transmitter. Those spatiotemporal correlations cause
QAM waveform distortions in the transmitter side. Noises
generated in the driver circuits are converted into ampli-
tude noises and phase noises of the optical signals by the
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Fig. 2. QAM constellation diagram with and without distortion.

Mach-Zehnder modulators. These noises also cause dis-
tortion of the transmitting waveforms.
Similar to the transmitter, the two amplifiers corre-

sponding to the I and Q outputs in the receiver have
a spatial correlation from each other since the optical sig-
nals are incoming from the same laser diode. There is
also a temporal correlation between successive electrical
waveforms generated by the same amplifier circuit. Those
correlations and noises cause the distortion of the wave-
forms received. To reflect all those noises and correlations
into the datasets, we use an optoelectronic circuit simu-
lator and the transceiver model shown in Fig. 1 when
generating the machine learning datasets.

IV. SVM Classification for QAM Equalization

A. Bit-wise classification of QAM symbols

SVM-based methods that learn QAM waveform distor-
tion trends from a large amount of communications data
and compensate the distortion based on these pre-learned
trends have been proposed in [7–10]. An example of a 16-
QAM constellation is shown in Fig. 2. The received sym-
bol of 16-QAM is encoded and decoded as a 4-bit code
since 16 coordinate points in the I-Q plane can be rep-
resented by a 4-bit code. In the method proposed in [7],
the 0-1 classification for each bit in the code representing
the received symbol is simplified to a 2-class classification
problem using SVM. For example, the least significant bit
(LSB) of a 4-bit code is classified as 1 if the I-Q coordinate
of the received symbol is within the red frame in Fig. 2(a),
and as 0 if it is outside the red frame. Similarly, the most
significant bit (MSB) is classified as 1 if the received sym-
bol is above and to the right of the blue line in Fig. 2(a),
and as 0 if it is below and to the left.

B. Basic idea of proposed approach

Our approach is based on the idea presented in [7].
However, unlike the methods proposed in [7–10], our
method is accurate and less expensive in computational
cost. Those existing methods [7–10] are either based on
linear SVM, which is low cost but has low classification
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Fig. 3. Equalizing QAM waveform distortion with line segment
connections derived by linear SVM classifier.

accuracy, or based on nonlinear SVM, which is highly ac-
curate but expensive. Our method classifies each bit of a
received symbol into two classes (i.e., 1 or 0) using bound-
aries expressed by a concatenation of linear equations in
the I-Q plane, which are derived by simple linear SVMs.
For example, the constellation map shown in the upper
left of Fig. 3 shows an example of decoding the LSB in
the received 16-QAM symbol by classifying the inside and
outside of the area enclosed by the thick blue boundary.
This boundary is composed of the eight lines derived from
the linear SVMs. In summary, the problem of decoding
each bit of a received 16-QAM symbol can be defined as
the problem of dividing the I-Q plane into a region of 0
or 1 with a boundary represented with a concatenation of
multiple lines which are derived by linear SVMs. In the
case of 16-QAM, our method uses 8 lines for the least sig-
nificant bit (LSB) and the third LSB, and 3 lines for the
second LSB and the most significant bit (MSB) as shown
in Fig. 3. In other words, the received 16-QAM symbol
can be decoded into 4 bits by dividing the I-Q plane with
boundaries represented by a concatenation of lines which
can be derived with a total of 22 linear SVMs.

C. Hardware implementation of SVM classifier

Any line in the I-Q plane can be expressed by a linear
equation (1) with I and Q as variables. If the value of Ex

is 0, the I-Q coordinate of the received symbol in the I-Q
plane is on the line.

Ex = α · I + β ·Q+ γ (1)

Therefore, the side of a particular line in the I-Q plane
on which the coordinate of a received QAM symbol is lo-
cated can be determined by the sign bit (i.e., the most
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significant bit) of the result of a multiply-add operation
which consists of two multiplications and two additions.
Figure 4 shows the hardware implementation for the LSB.
The received I-Q signals are first converted from analog
signals to digital signals using AD converters (ADCs in
Fig. 4). The digital I-Q values are multiplied with the α
and β values respectively, and these products are finally
added together with γ as shown in Fig. 4. Note that the
symbols “∗” and “+” in Fig. 4 represent digital multiplier
and adder, respectively. The values of α, β and γ are ob-
tained by a linear SVM classifier. Once the value of Ex

in equation (1) is calculated with the digital multiply-add
circuits, the sign bits of those results are obtained. The
inverts of the sign bits are used to calculate each bit of the
code received. Figure 5 shows an example of the logic cir-
cuit used to calculate the second LSB of the received code.
The AND gate in Fig. 5 specifies the green shaded area
of the I-Q constellation diagram. Similarly, the OR gate
covers either the green shaded area or the yellow shaded
area of the I-Q constellation diagram, which corresponds
to the second LSB of the received code. This idea can be
generalized for the other bits of the code received.

V. Experimental Evaluation

A. Accuracy, Power, and Area Estimation

A.1. Evaluation Setup

As benchmark datasets, we use two types of datasets to
evaluate the proposed SVM classifier. The first dataset
is synthetically created by incorporating noise and spa-
tiotemporal correlations based on numerical manipulation
without using a circuit simulator. The second dataset is
generated by injecting amplitude and phase noise into the
transceiver circuit model shown in Fig. 1 using an op-
toelectronic circuit simulator. In generating the second
dataset, we inject random noise into both the transmitter
and receiver laser diodes. Random noise is also injected
for the driver circuits in the transmitter and the ampli-
fier circuits in the receiver. Figure 6 shows examples of
constellation maps corresponding to the first and second
datasets. For both datasets, 90% of the data is used for
training and 10% is used for evaluation. To evaluate the
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Fig. 4. Logic circuit implementation of linear SVM classifier.

proposed SVM classifier, we compare it with the following
three existing SVM classification methods. The results of
those methods are compared in Table I and II.

OvO linear SVM is to generate an optimal linear
boundary between every two different classes (i.e.,
One versus One; OvO) of training datasets. The ad-
vantage of OvO SVM is that the number of samples
per training is relatively small. Therefore the train-
ing speed for finding a single boundary is faster and
the accuracy is higher. However, since the N classifi-
cation problem needs to train N× (N−1)/2 decision
functions (N > 2), the total number of linear bound-
aries will be too large when N is large and thus the
prediction speed will be affected.

OvR linear SVM is to generate a boundary between a
class of samples and the remaining multiclass samples
(i.e., One versus Remain; OvR), to achieve multiclass
recognition. This method only requires an optimal
boundary between a class of samples and the corre-
sponding remaining samples, rather than classifying
between the two samples. Therefore, if it is a N
classification problem, then you need N linear SVMs
(N > 2) and the prediction speed is faster. How-
ever, the classification accuracy is generally lower
than that of the OvO.

RBF nonlinear SVM is based on the Radial Basis
Function (RBF) kernel, which is one of the most pow-
erful, useful, and popular kernels in the SVM classi-
fiers. However, it needs to calculate the dot prod-
ucts of all support vectors and the input during clas-
sification. Therefore, the computational complexity
depends on the number of support vectors, and the
number of MAC operations needed is generally much
higher than the OvO linear SVM.

We implement four SVM classifiers including our pro-
posed SVM classifier and above three existing methods
using the scikit-learn framework. Scikit-learn is a Python
module for machine learning.
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Fig. 5. Example of logic circuit implementation for 2nd LSB of
received 4-bit code.
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Fig. 6. Examples of constellation diagrams corresponding to the
first and second datasets.

TABLE I
Classification accuracy for the 1st dataset.

SVM model accuracy (%) # MAC

OvO linear SVM 99.04 240
OvR linear SVM 96.39 32
RBF nonlinear SVM 99.26 > 10,000
Proposed SVM 99.01 44

A.2. Evaluation Results

We conduct experiments using the datasets presented in
the previous subsection. 10,000 communication symbols
are used for the accuracy evaluation. The results for the
two datasets are summarized in Table I and II, respec-
tively. The three existing methods described in the previ-
ous subsection are compared with our proposed method in
the tables. The word “# MAC” represents the number of
multiply-accumulate (MAC) operations required for the
SVM classification. Note that two MAC operations are
needed to express one linear equation with I and Q as
variables on the I-Q plane as explained in Sec. IV.
Compared to OvO linear SVM, our method reduces the

number of MAC operations needed by more than 80%
while achieving similar classification accuracy. Compared
to OvR, which is one of the most lightweight SVM clas-
sifiers, classification accuracy is improved from 96.4% to
more than 99.0% at the cost of only 40% increase in the
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(a) Constellation of the 1st dataset (b) Constellation of the 2nd dataset

Fig. 7. Examples of SVM classification for the LSBs in
constellations corresponding to the first and second datasets.

TABLE II
Classification accuracy for the 2nd dataset.

SVM model accuracy (%) # MAC

OvO linear SVM 99.74 240
OvR linear SVM 96.42 32
RBF nonlinear SVM 99.71 > 10,000
Proposed SVM 99.51 44

number of MAC operations needed. Although the classi-
fication accuracy achieved by RBF nonlinear SVM is very
good, the number of MAC operations required is huge.

B. Generalization of the proposed method

Our SVM classification method can be generalized as
a method to compensate for various 16-QAM constella-
tion distortions which correspond to distortions in the
received QAM waveform. For example, Figure 7 shows
how the least significant bit (LSB) of the received code
can be decoded taking into account the variation of the
distortion in the 16-QAM constellation. The figures on
the left and right show constellations for the 1st and 2nd

datasets, respectively. The decoding process is achieved
by identifying the region bounded by two zigzag red and
green borders. Any region bounded by two zigzag bor-
ders composed of four line segments, respectively, can be
specified using eight linear equations and AND-OR logic
functions, as explained in Fig. 5. However, the combina-
tion of AND-OR logic changes depending on the distor-
tion of the constellation. We utilize a multiplexer-based
circuit shown in Fig. 8 to make the AND-OR combina-
tions programmable. For example, the region between the
two zigzag boundaries in the left constellation of Fig. 7
can be specified by ((x1 ∧ x2) ∨ (x3 ∧ x4)) ∧ ((x5 ∧ x6) ∨
(x7∧x8)). On the other hand, the region between the two
zigzag boundaries in the right constellation is specified by
((x1 ∨ x2) ∧ (x3 ∨ x4)) ∧ ((x5 ∨ x6) ∧ (x7 ∨ x8)). With
this programmable logic, both regions can be specified.
The circuit shown in Fig. 8 is just an example of a naive
circuit realization; more sophisticated circuit implemen-
tations may exist. The regions corresponding to the other
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bits of the code received can be specified similarly.

We describe a register transfer level (RTL) Verilog-HDL
description of the SVM classifier which decodes the 16-
QAM communication symbol. It has a functionality to
correctly decode the received waveform taking into ac-
count the variation of the distortion in the 16-QAM con-
stellation as explained above. Based on the RTL simula-
tion, we confirm that the classification accuracy on both
the 1st and 2nd datasets is exactly the same as the results
obtained with Python-code-based accuracy estimation.

VI. Conclusion

In this paper, we proposed a method to equalize
QAM waveform distortion with a support vector ma-
chine (SVM) classifier. The proposed SVM classifier uses
the boundary created by concatenating line segments on
the I-Q plane to classify each bit value of the received
QAM symbol into two classes (i.e., 1 or 0). We use two
types of datasets to evaluate the proposed SVM classi-
fier. The first dataset is synthetically created by incor-
porating noise and spatiotemporal correlations based on
numerical manipulation without using a circuit simula-
tor. The second dataset is generated by injecting ampli-
tude and phase noise into the transceiver circuit model
shown in Fig. 1 using an optoelectronic circuit simulator.
We designed the proposed SVM classifier using Verilog-
HDL. With the HDL description, we confirmed that it
could successfully equalize 16-QAM communication sym-
bols and decode them into the correct 4-bit digital sig-
nal with high classification accuracy for both datasets.
Compared to OvO linear SVM, our method reduces the
number of MAC operations needed by more than 80%
while achieving similar classification accuracy. Compared
to OvR, which is one of the simplest existing SVM clas-
sifiers, classification accuracy is improved from 96.4% to
more than 99.0% at the cost of only 40% increase in the
number of MAC operations needed. Although the classifi-
cation accuracy achieved by RBF nonlinear SVM is very
good, the number of MAC operations required is huge.
Our method involves much fewer MAC operations and
incurs only a 0.2% accuracy degradation.

Our future work will be devoted to fully automate the
boundary generation for SVM classification. Generating
more different datasets taking practical noise and interfer-
ence into account to enhance the classification accuracy
of our SVM classifier is also our important future work.
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