
A Hardware Design Environment for ROS2 Node
to FPGA-Integrated SoC

Xingze Li Ryota Yamamoto

Graduate School of Informatics Department of Engineering for Innovation
Nagoya University National Institute of Technology, Tomakomai College

Nagoya, Aichi 464-8601 Tomakomai, Hokkaido 059-1275
r-yamamoto@tomakomai-ct.ac.jp

Shinya Honda

Graduate School of Informatics
Nagoya University

Nagoya, Aichi 464-8601
honda@ertl.jp

Abstract— As robotic applications increasingly

demand both high performance and energy effi-

ciency, FPGA-integrated system-on-chip (SoC) plat-

forms have emerged as a promising solution for of-

floading intensive workloads. Despite their potential,

integrating hardware (HW) accelerators with ROS2-

based applications remains a significant difficulties, of-

ten requiring deep domain expertise. In this paper, we

present CWB2ROS, a development framework that

enables seamless integration between ROS2 nodes

and HW modules synthesized via high-level synthesis

(HLS) using Cyber Work Bench (CWB). CWB2ROS

supports core ROS2 communication models, includ-

ing Publish/Subscribe, Service and Parameters, and

automates the generation of necessary software wrap-

pers. Experimental results on the Kria KR260 plat-

form demonstrate that CWB2ROS achieves competi-

tive communication latency and offers greater flexibil-

ity compared to existing solutions.

I. Introduction

In recent years, FPGA-integrated SoC (System on
Chip) devices have been increasingly used to accelerate
processing and improve energy efficiency, especially for
compute-intensive workloads such as machine learning [1].
In the field of robotics, such heavy computations are also
frequently employed for tasks like image recognition and
map generation. For example, if map generation is de-
layed, it can interfere with the robot behavior.

The Robot Operating System (ROS) has become a de
facto standard in robotics software development [5], of-
fering modular components and robust communication
frameworks. In ROS, functionalities are implemented as

“nodes” that exchange data through well-defined inter-
faces.
Despite the suitability of FPGAs for performance-

critical tasks, their adoption in robotics is hindered by
the complexity of hardware (HW) design and integra-
tion. Developing HW accelerators typically involves hard-
ware description languages (HDLs) and detailed platform
knowledge. While high-level synthesis (HLS) offers a
more accessible development pathway using languages like
C/C++, it still demands expertise in software-hardware
interfacing, particularly when integrating with ROS2 en-
vironments. Due to this complexity, there is a substantial
barrier for both robotics engineers unfamiliar with HW,
and HW designers unfamiliar with ROS2.
To address these development problem, we propose

CWB2ROS, a development framework that enables seam-
less integration of C/C++ based HLS modules generated
using Cyber Work Bench (CWB) into ROS2 systems. By
automatically generating interface nodes that expose HW
functionality through ROS2 interfaces, the framework al-
lows HW components to be used as conventional software
nodes. The main contributions of this work are:

• A seamless integration flow between CWB-generated
HW modules and ROS2 applications

• Support for core ROS2 communication models: Pub-
lish/Subscribe, Service, and Parameter

• A comparative evaluation highlighting the perfor-
mance and development benefits over existing tools

This framework is designed to bridge the gap between
HW developers and robotics developers, enabling efficient
co-design and prototyping of FPGA-accelerated robotic
systems.
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Fig. 1.: Publisher/Subscriber communication.
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Fig. 2.: Server Client communication.

II. Related Work

A. ROS2

ROS2 (Robot Operating System 2) is a modular and
open-source middleware framework widely adopted in
robotic systems. It introduces several layers of abstrac-
tion, such as plumbing, tools, capabilities, and ecosystem.
ROS2 provides node-based application design.
A ROS2 node represents a unit of functionality. Nodes

interact using four main communication mechanisms:

• Publish/Subscribe (Pub/Sub): A many-to-many
asynchronous communication model where publisher
nodes transmit messages to topics, and subscriber
nodes receive them. As illustrated in Fig. 1, node A
publishes to topic 1, which is subscribed to by nodes
B and C. Separately, node B publishes to topic 2,
which is received by node C.

• Service: A synchronous client-server model. A client
node sends a request, and the server node responds
after processing (see Fig. 2).

• Parameters: Runtime-configurable key-value settings
that can influence node behavior.

• Actions: A combination of Pub/Sub and Service used
for managing long-running tasks asynchronously.

In this paper, we focuses three communication: Pub/-
Sub, Service and Parameters in ROS2 applications.

B. FPGA-integrated SoC

FPGA-integrated System-on-Chip (SoC) platforms,
such as Kria series (AMD Inc.), integrate reconfigurable

CPU
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bus

I/O
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FPGALinux
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App.
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Fig. 3.: An example of FPGA-integrated SoC architecture.

logic with general-purpose processing units. These plat-
forms are especially suitable for robotics and computer
vision, where tasks like image processing and simultane-
ous localization and mapping (SLAM) impose both per-
formance and power constraints.
A typical FPGA-integrated SoC architecture is shown

in Fig. 3. Here, the CPU and FPGA fabric communicate
via system bus, with the CPU typically running a Linux-
based OS and orchestrating I/O and application logic.
HW modules are used to offload performance-critical op-
erations from the CPU to the FPGA, improving overall
system efficiency.
Designing in such environments, however, it is diffi-

cult for developers to design low-level memory-mapped
interfaces, custom drivers, and synchronization mecha-
nisms. These requirements are often outside the skill set
of robotics software developers.
In this study, we targets Kria KR260 (AMD Inc.), a

board designed for robotics applications.

C. High Level Synthesis

To mitigate the complexity of HW design, HLS tools
allow HW functionality to be described using high-level
languages such as C or C++. For example, there are two
HLS tools:

Vitis HLS (AMD): Offered as part of the Vitis devel-
opment environment, Vitis HLS is restricted to AMD
devices but integrates with the Kria Robotics Stack
(KRS).

Cyber Work Bench (CWB, NEC): A commercial
tool that is FPGA vendor-agnostic. CWB accepts
input in BDL, SystemC, C, or C++, and provides
RTL output with optimizations such as loop un-
rolling and memory mapping. CWB also includes
an automatic interface generator that maps function
arguments to registers and memory accessible over
the AXI bus. It is an essential feature for integration
with CPU software [3].

This study adopts CWB to support a wide range of
FPGA-integrated SoCs. The design description written
in C or C++.
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D. ROS Integration for FPGA-integrated SoCs

D.1. Vitis HLS

For Kria Zynq devices targeted in this study, AMD pro-
vides a toolchain known as the Kria Robotics Stack
(KRS). KRS facilitates the development of ROS2 applica-
tions on FPGA-integrated SoCs by leveraging high-level
synthesis (HLS). It offers an integrated environment that
combines robotics-oriented libraries and utilities, thereby
accelerating the prototyping and deployment of industrial
robotic applications.
A development with KRS requires a comprehensive un-

derstanding of the ROS2 development process. KRS ex-
tends the standard ROS2 build system by incorporating
HLS-based IP core generation into the ament and col-
con build workflows. While this integration aligns with
conventional ROS2 application development, it imposes
substantial cognitive and technical demands on develop-
ers who lack prior experience with ROS2 or its associated
build infrastructure.
Addtionally, KRS development has been inactive for

approximately two years. It supports only AMD FPGA
models compatible with Vivado 2022.1 and does not sup-
port other FPGA vendors or newer devices [4]. Further-
more, its performance and flexibility have not been sys-
tematically evaluated in comparison with alternative so-
lutions.

D.2. Other Research Examples

Other notable approaches for integrating ROS2 and
FPGA include: Nyboe et al. proposed an FPGA accel-
eration solution for drones that facilitates seamless data
exchange between ROS2 nodes and HW tasks [6]. Vilches
et al. developed a platform-independent architecture that
improves real-time responsiveness in robotic systems [7].
Lienen et al. demonstrated HW-executed ROS2 nodes
using ReconOS, validating coordination between FPGA
logic and ROS2 environments [8].
In contrast to these, our proposed tool, CWB2ROS,

aims to support a range of FPGA-integrated SoCs and
reduce development complexity by automating node inte-
gration based on C code.

III. CWB2ROS: ROS Node Development Tool
for HW

In this study, we propose a tool called CWB2ROS,
which facilitates the integration of ROS2 nodes with HW
modules generated by Cyber Work Bench (CWB). This
tool automates the generation of ROS2 node definitions
and build system files necessary for interacting with the
HW, thereby streamlining the development process. To
support a broad range of FPGA-integrated SoCs, the tool
adopts CWB as its high-level synthesis (HLS) backend.
The tool overview for implementing CWB2ROS are de-

fined as follows:

C++ code
for HLS

Linux driver

node
description

topping definition
message definition
node source code

HW IF input file
for logic synthesis

access
code

CMakeList.
txt

Generated by 
CWB2ROS

Generated by 
CWB

node
definition

node
source 
code

CWB2ROS

Fig. 4.: CWB2ROS: overview.

Spec. 1: Supports ROS2 communication mechanism.

Spec. 2: Maps inputs and outputs of HW modules syn-
thesized by HLS to ROS2 message interfaces.

Spec. 3: Requires the user to provide only a node defini-
tion file and C++ source code for the HW function.

Spec. 4: Utilizes the HW I/O auto-generation feature
provided by CWB.

Spec. 5: Follows the standard ROS2 development flow.

Based on these specifications, the proposed architecture
of CWB2ROS is shown in Fig. 4.

A. ROS2 Communication Plumbing in CWB2ROS

To satisfy the above specifications, CWB2ROS sup-
ports two major ROS2 communication models: Publish/-
Subscribe and Service.

In Publish/Subscribe communication, data is asyn-
chronously transmitted between publisher and subscriber
nodes. A software node (referred to as an interface node),
which is automatically generated and performs as a com-
munication bridge between ROS2 and the HW module, is
used to handle communication with the HW. This inter-
face node receives a topic from a ROS2 node, forwards it
to the HW, waits for the HW to complete processing, and
then publishes the result on another topic.

In Service communication, the interface node performs
as a ROS2 server node. When a request is received from
a client node, it invokes the HW module with the input
arguments, waits for the result, and returns it as a service
response.

This abstraction allows other ROS2 nodes to interact
with HW-backed processing as if they were communicat-
ing with standard software ROS2 nodes.

The corresponding communication flows, including key
interactions such as “DriveSend” and “Polling” via AXI,
are illustrated in Fig. 5a for Pub/Sub and Fig.5b for Ser-
vice communication.
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Fig. 5.: Communication Flow

B. Interface node

The interface node is automatically generated based on
a configuration file and functions as a ROS2 node that
communicates with the HW via the AXI bus.
In the Publish/Subscribe model (see Fig. 5a), the in-

terface node subscribes to a topic published by another
ROS2 node. Upon receiving a message, it transmits the
input data to the HW through the AXI bus using a Linux
driver. The HW, upon completing its task, sends the
result back via the AXI bus. The interface node then
publishes this result on a new topic. Data reception is
implemented via polling. Currently, polling is used for
simplicity, though interrupt-based or DMA-based imple-
mentations are possible and are left as future work.
In the Service model (see Fig. 5b), the interface node re-

ceives a service request and passes the input arguments to
the HW. After processing, the HW returns the result via
the AXI bus, and the interface node responds to the client
with this data. As with Pub/Sub, data reception is han-
dled via polling. Currently, polling is used for simplicity,
with other methods considered as future improvements.
Although HW-side interface descriptions must be writ-

ten by the developer, CWB allows this to be done by sim-
ply annotating function arguments, making the process
manageable even for those with limited HW experience.

C. Design Flow and Node Definition

The development flow when using CWB2ROS is illus-
trated in Fig. 6, which outlines both software and HW
build steps such as make, make fpga, and colcon integra-
tion. The developer is responsible for preparing two items:

1. A YAML-based node definition file, which describes
the interface node and associated topics.

2. A C or C++ source file that defines the HW function,
including its input/output interface.

Listing 1: Definition described in YAML

1 SysName: array_pubsub

2 CWB_WS:
3 project: array

4 function: AddSub_array #top function

5 cpp: true

6 arglist: [a, b, sub, res] #args of top function

7 file: [add_sub_arr_top.cpp, impl/add_sub_arr.cpp]
8 incpath: [impl]
9 ROS2ComType: PubSub

10 Node:
11 name: array_subscriber

12 ArgTopic:
13 name: Topic_array_arg

14 msg_name: ArgArraySubT

15 qos: QoS

16 ReturnTopic:
17 name: Topic_array_ret

18 msg_name: RetArraySubT

19 qos: QoS

20 Arg:
21 - {name: a, type: int8_t, depth: 16}
22 - {name: b, type: int16_t, depth: 16}
23 Return:
24 - {name: b, type: int16_t, depth: 16}
25 - {name: res, type: int32_t, depth: 16}
26 Parameter:
27 - {name: sub, type: bool, initval: false}

Because the direction (input or output) cannot be in-
ferred from the CWB HW description alone, the node def-
inition file must explicitly specify this along with the com-
munication method (Pub/Sub or Service), topic names,
and QoS settings.
During the build process:

• For software, CWB2ROS generates the CMake-
Lists.txt, interface node C++ code, and a Makefile
from the YAML node definition. These are built us-
ing colcon, the standard ROS2 build tool.

• For HW, the C/C++ description is passed to CWB
for HLS, generating RTL files. These RTL files are
then passed to logic synthesis tools such as Vivado to
generate the final FPGA bitstream for deployment.

Because the HW is described in C/C++, simulation-
based verification is also easily performed. This design
flow supports seamless integration of HW into ROS2 sys-
tems, leveraging familiar development tools and processes.

IV. Evaluation

We evaluated the performance and practicality of
CWB2ROS by comparing it with KRS. Our evaluation
focuses on two aspects:

• Communication latency between ROS2 nodes and
the HW module

• Qualitative comparison regarding development diffi-
culty and supported platforms
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Fig. 6.: CWB2ROS Tool Flow.

TABLE I

: Exprimental Setup

Target board Kria KR260
KRS version 2022.1
HLS Tool CWB

Logic Synthesis Vivado 2022.1
Linux (KRS) Petalinux

Linux (CWB2ROS) Ubuntu 22.04

A. Experimental Setup

The evaluation environment is configured as TABLE I.
Note that the choice of Vivado version (2022.1) was de-
termined by KRS compatibility constraints.
For latency measurements, we used a ROS2 node that

sends a topic to initiate processing and another node that
subscribes to the result. We measured the time elapsed
from when the first node publishes a message to when
the subscriber node receives the response topic after HW
processing.
The HW module used for this test simply copies the

input data and returns it without any additional compu-
tation, to isolate the communication latency.

B. Latency Result

Figure 7 shows the measured communication latency
as a function of data size (in bytes). The x-axis is plotted
on a linear scale, and the y-axis represents the end-to-end
transfer latency in milliseconds. CWB2ROS shows bet-
ter performance than KRS for data sizes of 8KB or less.
However, for data sizes larger than 8KB, KRS achieves
lower latency.
We attribute this to the fact that KRS uses burst-mode

transfers via the Xilinx Runtime (XRT) library, which en-
ables efficient communication via burst-mode transfer. In
contrast, CWB2ROS currently uses a single data trans-
mission mechanism via AXI, which becomes less efficient
as data size increases.
These results suggest that for small-to-moderate data

sizes, CWB2ROS provides lower communication latency.
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Fig. 7.: Communication latency vs. data size for CWB2ROS
and KRS.

To improve performance for larger data sizes, we plan to
support DMA or interrupt-based transfer mechanisms in
the future.

C. Qualitative Comparison

A qualitative comparison between KRS and CWB2ROS
is shown in Table II, focusing on required knowledge and
toolchain compatibility.
As shown in Table II, KRS requires developers to be

familiar with the internal workings of the ROS2 build
system, including the use of extended CMake configura-
tions specific to KRS. This makes the development pro-
cess more complex, particularly for HW engineers who
are not accustomed to ROS environments. In contrast,
CWB2ROS abstracts away most of the ROS2-specific con-
figurations and requires only a simple YAML-based node
definition and C/C++ source code, lowering the entry
barrier significantly.
In terms of implementation complexity, CWB2ROS sig-

nificantly reduces the development burden. For instance,
integrating a HW module with one input and one out-
put requires only 25 lines of YAML-based configuration,
compared to approximately 54 lines in KRS. More impor-
tantly, KRS demands advanced knowledge of C++ tem-
plates, ROS2 node structure, and OpenCL-based mem-
ory management. For example, defining a publisher in
KRS entails invoking create publisher with appropriate
type parameters, which may be challenging for HW de-
velopers. By contrast, our approach allows users to spec-
ify only essential elements̶such as communication type,
topic names, and argument data types̶without requiring
in-depth expertise in ROS2 internals or OpenCL seman-
tics. This substantially lowers the barrier to entry for
integrating HW into ROS2 systems.
With respect to toolchain compatibility, KRS is limited

to AMD FPGAs that are supported by Vivado 2022.1,
and thus cannot be used with newer FPGA models or
alternative synthesis tools. CWB2ROS, however, is de-
signed to be toolchain-agnostic and can support a wider
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TABLE II

: Comparison of KRS and CWB2ROS

Aspect KRS CWB2ROS

Required Knowledge Familiarity with ROS 2, custom build con-
figurations, and KRS-specific CMake.

Basic YAML node definition and C/C++
hardware description.

Lines of Code for Node
Definition and Commu-
nication (1 input, 1 output)

54 lines total: 12 for OpenCL init, 9 for mem-
ory mapping, 13 for callback, 12 for publish-
ing, 8 for main.

25 lines total: 8 for HW top function, 1 for
communication type, 7 for args, 6 for return,
2 for node.

Toolchain Compatibility Only supports AMD FPGAs with Vivado
2022.1.

Supports various SoCs depending on the
logic synthesis tool.

Example Code (KRS) is refered from https://github.com/ros-acceleration/acceleration_examples/blob/main/

nodes/doublevadd_publisher/src/doublevadd_component_fpga.cpp

range of FPGA-integrated SoCs, provided that the logic
synthesis tool can handle RTL generated by CWB. While
some adaptation may still be necessary for non-AMD plat-
forms, the proposed tool offers much greater flexibility in
this regard.

V. Summary and Conclusions

This paper proposed CWB2ROS, a development envi-
ronment that enables seamless integration of HW mod-
ules synthesized via HLS into ROS2-based robotic appli-
cations. By leveraging CWB, the tool allows developers to
describe HW behavior in C/C++ and automatically gen-
erate the necessary ROS2 interface components, including
communication nodes and build configurations.

CWB2ROS supports Pub/Sub, Client-Server and Pa-
rameter communication mechanisms and abstracts the
complexity of hardware-software integration through
auto-generated interface nodes. The proposed develop-
ment flow reduces the barrier to entry for developers
with either HW or software backgrounds and improves
reusability across FPGA platforms.

In our evaluation using the Kria KR260 board,
CWB2ROS demonstrated lower communication latency
than KRS for data sizes up to 8KB, while maintaining a
significantly simpler development process. Although la-
tency increased for larger data sizes due to the polling-
based transfer mechanism, this limitation is addressable
by supporting DMA in future work.

Compared to KRS, CWB2ROS also offers broader plat-
form compatibility, as it is not tied to a specific version
of Vivado or a particular FPGA vendor. This makes
it suitable for use with newer and more diverse FPGA-
integrated SoCs.

In summary, CWB2ROS Simplified HW/ROS2 integra-
tion through automatic node generation and lower com-
munication latency. Furthermore, CWB2ROS moderate
data transfers, and enhanced portability across FPGA
platforms.

As future work, we plan to extend the tool to support
burst-mode and DMA-based communication to further re-
duce latency for large data transfers. Additionally, ex-

panding support for other ROS2 communication models
(e.g., Actions) is also under consideration.
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