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Abstract— In this paper, we present a detailed anal-
ysis of the IMAX3 CGRA-based accelerator and the
IMAX4 prototype with an upgraded host CPU. To
address the host CPU bottlenecks of its predecessor,
IMAX3, IMAX4 incorporates a server-oriented Intel
Xeon processor and PCle Gen5 connectivity, realiz-
ing IMAX scalability.
ated the IMAX4 prototype using microbenchmarks
and the LLaMA3 8B quantized model. The results
demonstrate significantly reduced host-side overheads

We implemented and evalu-

and improved data transfer compared to IMAXS3.
While performance characteristics vary by quantiza-
tion, IMAX4 demonstrates significant potential by
shifting bottlenecks from the host to data pathways,
highlighting the viability of CGRA for server-based
LLM acceleration.

I. INTRODUCTION

In recent years, Al (Artificial Intelligence) technology
has made remarkable progress and is widely applied in
a variety of fields, such as image recognition and natural
language processing. In particular, LLMs (Large Lan-
guage Models) have the ability to engage in natural di-
alogue with humans and to perform sophisticated tasks
such as sentence generation, translation, and question-
and-answer sessions. Therefore, LLMs have attracted a
great deal of attention not only in academia but also in
industry [1,2].

Currently, LLM computation is mainly performed using
CPUs (Central Processing Units) and GPGPUs (General-
purpose Graphics Processing Units). Shehabi et al. sug-
gest that the energy consumption of data centers in the
U.S. in 2028 will account for 6.7 % to 12 % of the estimated
power consumption [3]. It is becoming difficult to achieve
high performance per power with existing CPU and GPU
architectures, and it is essential to develop new acceler-
ator technologies more energy efficient. With this back-
ground, we proposed a CGRA (Coarse Grained Reconfig-
urable Array)-based accelerator architecture, IMAX3 (In-
Memory Accelerator eXtension 3), which aims to achieve
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Fig. 1. IMAX4 Prototype using Intel Xeon processor

both high power efficiency and program flexibility. IMAX
is an accelerator that features a linear structure of alter-
nating cache memory and processing units to maximize
LMM (Local Memory Module) utilization.

Eto et al. have evaluated LLaMA2 7B-based LLMs
using IMAX3 on an FPGA and found that it has the po-
tential to demonstrate good power efficiency compared to
CPUs and GPUs for 1-thread and 2-threads [4]. However,
the 2-core ARM CPU host system of IMAX3 had perfor-
mance limitations in terms of controlling complex applica-
tions like LLMs, supplying data to the IMAX, and scal-
ability in multi-threaded processing. These issues have
been a major challenge in deploying the IMAX architec-
ture for server environments requiring higher-performance
computation. In this work, we propose an IMAX4 proto-
type as shown in Fig. 1 that upgrades the host CPU to
an Intel Xeon server-oriented processor and utilizes one
VPK120 with four VPK180 boards.

The objectives of this work are twofold. First, to iden-
tify the bottleneck of IMAX3 through a detailed run-
time analysis using the more recent and generic LLaMA3
model. The second is to obtain initial insight into the
proposed IMAX4 prototype with an updated host CPU
to confirm its basic operation and evaluate its preliminary
performance.

The main contributions of this paper are as follows:



e We designed and implemented a server-oriented
IMAX4 prototype. This system features a redesigned
host system, transitioning from the conventional 2-
core ARM CPU to an 16-core Intel Xeon processor,
and employs a PCle Genb interface. This design,
based on a multi-lane IMAX architecture, also en-
sures future scalability.

e We conducted a detailed evaluation and analysis of
the execution performance in the LLaMA3 8B quan-
tized model on IMAX4. The performance character-
istics of IMAX3 and IMAX4 in LLM were clarified
through a detailed analysis of end-to-end latency and
matrix product processing time.

e We quantified the performance improvement of
IMAX by host CPU enhancements. Through
comparison of IMAX3 and detailed processing
time breakdown analysis, we identified current
performance-limiting factors.

The rest of this paper is organized as follows. Sec-
tion IT provides related work on LLM accelerators and
the previous work on LLM execution using the IMAX3.
Section III describes the architecture of the IMAX4 proto-
type. Section IV presents the results of our performance
evaluations, including fundamental characterization via
microbenchmarks and LLM execution evaluations using
LLaMA3. Finally, Section V concludes our work.

II. RELATED WORK

A. LLM Accelerators

Currently, GPUs are widely utilized for LLM learn-
ing and inference. However, the deployment costs and
power consumption of high-performance GPUs remain
high. Therefore, there is growing interest in alternative
architectures that offer greater power efficiency, especially
for LLM inference in specific applications.

In this background, research and development of ac-
celerators using reconfigurable devices such as FPGAs
(Field Programmable Gate Arrays) and CGRAs are ac-
tively being pursued. For example, Xu et al. pro-
posed "LlamaF,” an FPGA-based accelerator specialized
for Llama2 models, demonstrating efficient execution in
embedded environments [5]. Additionally, several works
have reported on accelerating the attention mechanism
and Feed-Forward networks, key components of Trans-
former models on FPGAs [6]. While these works attempt
to achieve high efficiency by optimizing for specific opera-
tions, challenges remain in terms of versatility, scalability
to large-scale models, and efficient coordination with host
systems. This work focuses on CGRA-based accelerators,
which offer a superior balance of architectural flexibility
and power efficiency.
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Fig. 2. IMAX3 configuration

B. IMAX Architecture and LLM on IMAX3

CGRA has the potential to combine the efficiency and
flexibility of ASICs, but it has faced challenges such as
scalability, compilation time, and loop implementation
complexity [7]. To address these challenges, we proposed
IMAX3 [8]. The basic design of IMAX is based on a linear
array structure that alternates processing units and cache
memory, aiming to thoroughly utilize LMM and improve
efficiency of irregular memory accesses. The IMAX ar-
chitecture features a multi-lane configuration consisting
of multiple compute lanes to increase parallel processing
power. As shown in Fig. 2, IMAX3 implements this 8-
lane configuration on an AMD Versal VPK180x4. These
lanes are allocated according to the thread count of the
application, allowing for parallel execution.

In the previous work by Eto et al., LLaMA2 7B-based
LLMs were evaluated on IMAX3. It was shown to have
the potential to exhibit good power efficiency compared to
existing CPUs and GPUs during 1-thread and 2-threads
operation [4]. However, the onboard ARM Cortex-A72
dual-core processor used for host control lacked processing
power. This limitation increased the overhead, especially
during program control and multi-threaded operation on
the host side, and significantly limited the overall system
performance. Therefore, the current IMAX3 has an 8-
lane configuration, but this number of lanes cannot be
fully utilized.

This work conducts a more detailed analysis of existing
IMAX3 and identifies its bottlenecks through an evalua-
tion with the LLaMA3 8B-based LLM, the successor to
the LLaMA2 7B model. Furthermore, as a step towards
resolving these identified issues, the work aims to intro-
duce the preliminary development of the IMAX4 proto-
type, targeted for high-performance server environments,
and to indicate future pathways for architectural enhance-
ments and subsequent evaluations.

III. IMAX4 PROTOTYPE

In this section, we proposed the design and implemen-
tation of IMAX4 as a new accelerator prototype for high-
performance and scalable LLM execution in a server en-
vironment.
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Fig. 3. IMAX4 configuration

A. IMAX4 System Overview

Fig. 3 shows the system configuration of IMAX4. It
consists of the host processor, an Intel Xeon, one AMD
Versal VPK120 evaluation board that functions as a PCle
bridge, and four AMD Versal VPK180 evaluation boards
implemented with IMAX. The most significant change
in IMAX4 is the revamped host CPU. The on-board 2-
core Arm Cortex-AT72 processor used in IMAX3 was re-
placed by a server-class 16-core Intel Xeon processor. This
change significantly increases the host-side computing
power and reduces the overhead associated with complex
control flows and data pre-processing and post-processing
during LLM execution.

In addition, the AMD Versal VPK180 used in IMAX3
and the IMAX4 prototype lacks a direct PCle Gen5 in-
terface. Therefore, the AMD Versal VPK120 evaluation
board is used as a PCle bridge. The VPK120 is connected
to the host system via PCle Gen5 for high-speed data
relay and control with the downstream VPK180 group.
Furthermore, a 16 GB DMA buffer supporting cacheable
CMA was allocated to bolster the data supply infrastruc-
ture. While this work uses only 4 GB for the convenience
of the experiment, the full 16 GB capacity will be utilized
in future implementations to maximize data transfer per-
formance.

B. Data Transfer Infrastructure

IMAX4 features a significantly enhanced host-
accelerator data transfer infrastructure, crucial for max-
imizing performance in high-bandwidth applications like
LLMs. IMAX3 employed an ARM SoC host with a 32-bit
LPDDR4 memory interface (4 Gbps/lane), yielding a the-
oretical maximum bandwidth of 128 Gbps. Data supply
to IMAX3 relied on this LPDDR4 interface and a sin-
gle internal SoC NoC data path, limiting overall system
throughput.

In contrast, IMAX4 significantly improves data trans-
fer capability by adopting PCle Genb for its Intel Xeon
processor connection. This configuration was chosen over
an alternative that uses PCle Gen4 x16 lanes. Conse-
quently, we prioritized the higher per-lane transfer rate of
PClIe Gen5 to ensure a simple bus architecture.

Furthermore, IMAX4 leverages increased parallel data
transfer capability through its multiple PCle bus lines.
Unlike IMAX3 single data path, IMAX4 assigns its two
PCle Gen5 links to distinct groups. One link (PCI-e#0)
serves units 0-3, and another (PCI-e#1) serves units 4-7.
This allows parallel data supply to, and result retrieval
from, multiple IMAX lanes, significantly reducing data
transfer overhead and boosting overall accelerator utiliza-
tion efficiency.

IV. EXPERIMENTS AND RESULTS

This experiment aims to identify the bottlenecks of
IMAXS3 through detailed analysis and to clarify the im-
provements made in IMAX4. To achieve this, we first con-
ducted a basic evaluation using microbenchmarks. Sub-
sequently, we performed an application-level evaluation
using LLMs.

A. Fundamental Evaluation by Microbenchmark

The primary objective of this microbenchmark is to
evaluate the data transfer performance to the 512KB
LMM integral to each IMAX computation unit. To fully
utilize the LMM capacity, the benchmark processes a to-
tal of 512 KB of data per lane, configured as three 128 KB
input arrays (A, B, C) and one 128 KB output array (D).
During the evaluation, each IMAX lane asynchronously
executes a FMA (Fused Multiply - Add) operation, which
can be expressed as D = C'+ A x B. The execution time
of a process in IMAX3 is determined by the total time of
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TABLE I

the following components: CPU, DRAIN, CONF, REGV,
LOAD, and EXEC. A detailed description of these compo-
nents is shown in Fig. 4. To ensure robust measurements,
each program execution was performed 10 times, and the
average processing time for each component was recorded
and analyzed. Fig. 4 shows the time for each execution
phase by number of lanes. In IMAX3, the CPU processing
time increased with increasing host processing load with
the number of lanes. On the other hand, IMAX4 sig-
nificantly reduced the CPU, especially for three or more
lanes. However, the CONF of IMAX4 was longer than
that of IMAX3. This is considered to be partly due to
the low-frequency operation of PIO at 100 MHz to avoid
DMAC and PIO contention on the NoC.

Next, we compare the effective data transfer rates
during 1-lane execution, as detailed in Table I. IMAX3
achieved an effective LOAD transfer rate of approximately
13.9 Gbps and a DRAIN rate of approximately 13.0 Gbps.
In contrast, IMAX4 effective LOAD rate was approxi-
mately 8.7 Gbps, and its DRAIN rate was approximately
6.9 Gbps. While IMAXS3 rates demonstrated a degree of
efficiency relative to the AXI interface theoretical peak
bandwidth to the FPGA-internal LMM (approximately
37.1 Gbps for a 145 MHz, 256 bit interface), IMAX4 rates
were notably lower. These results confirm the presence
of a more significant bottleneck in IMAX4 data transfer
path compared to IMAX3.

Overall, IMAX4 resolved the control overhead issues
of IMAX3 by improving host CPU processing capability.
However, it also revealed new challenges, such as PIO
transfer overhead and a data transfer rate that is lower
than both AXI theoretical performance and IMAXS3.

DATA TRANSFER TIME AND EFFECTIVE BANDWIDTH COMPARISON

Transfer Type Device Time [us] Rate [Gbps]
IMAX3 220.3 13.9
LOAD : 384KB IMAX4 351.8 8.7
IMAX3 78.7 13.0
DRAIN': 128KB IMAX4 149.1 6.9

B. LLM Execution Evaluation using LLaMA3

To assess practical LLM acceleration of IMAX, we com-
pared IMAX3 and IMAX4 using the llama.cpp frame-
work [9] with the LLaMA3 8B Q3_K_S and Q8_0 quanti-
zation models. Evaluations consistently used "Hello” as
the input prompt, 32 predicted tokens, and a seed value
of 1. Primary metrics were end-to-end latency and ma-
trix multiplication function processing time on IMAX and
CPU. It is important to note that the matrix multiplica-
tion function processing time, a key metric, encompasses
data handling and control overhead, not solely raw IMAX
computation time. Llama.cpp executes matrix products
on IMAX cores via SIMD instructions after LMM data
transfer, with quantized data processed through an opti-
mized data flow.

Table II shows the evaluation results for the Q3_K_S
quantization model, and Table III for the Q8.0 quan-
tization model. First, we check the performance char-
acteristics of IMAX3. For a relatively smaller model
such as Q3_K_S, IMAX3 latency was relatively small dur-
ing multi-threaded execution, achieving 49.2 seconds at
2 lanes. However, as a limitation of the host CPU,
IMAX3 exhibits very long CPU processing time for both
the Q3_K_S and Q8.0 models.

Next, we examine the performance of IMAX4. For the
Q3_K_S model, the latency for IMAX4 at 1-lane execu-
tion was 172.0s, which was greater than that of IMAX3.
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TABLE II
PERFORMANCE COMPARISON OF IMAX3/4
ON Q3-K_S LLM INFERENCE

TABLE III
PERFORMANCE COMPARISON OF IMAX3/4
ON Q8-0 LLM INFERENCE

Configuration Processing Time [s Configuration Processing Time [s
Device  Lanes Latency [s] IMAX CP[I} Device  Lanes Latency [s] IMAX CP[U]
IMAX3 1 88.6 - 64.3 20.4 IMAX3 1 1799.0 - 231.3 1462.4
IMAX4 1 172.0 - 164.1 7.0 IMAX4 1 221.3 - 205.1 15.3
IMAX3 2 49.2 ' —44% 333 12.3 IMAX3 2 1700.0 '-55%  553.4 1033.0
IMAX4 2 87.6 —49% 82.6 4.0 IMAX4 2 112.3 —49% 1034 7.9
IMAX3 3 56.3 —36% 25.9 24.7 IMAX3 3 1638.6 —-8.9%  692.1 830.4
IMAX4 3 252.3 +47%  248.4 2.8 IMAX4 3 187.8 —154% 180.5 5.9
IMAX3 4 60.3 —-32% 21.6 31.9 IMAX3 4 1599.1 —11.1%  725.3 752.0
IMAX4 4 296.3 +72%  292.5 2.2 IMAX4 4 200.8 —-9.5%  195.0 4.4
IMAX3 5 65.1 —26% 20.2 35.3 IMAX3 5 1579.1 —12.2%  725.1 730.1
IMAX4 5 354.7  +106%  350.9 2.0 IMAX4 5 189.0 —-14.5% 184.0 3.8
IMAX3 6 67.1 —24% 17.5 39.2 IMAX3 6 1569.2 —12.8%  723.6 720.9
IMAX4 6 322.4 +87%  318.2 1.9 IMAX4 6 164.2 —258% 159.1 3.3
IMAX3 7 69.4 —22% 16.9 40.0 IMAX3 7 1559.5 —13.3%  725.7 703.1
IMAX4 7 387.3  +125%  383.7 1.7 IMAX4 7 217.0 —1.8%  212.2 3.0
IMAX3 8 70.2 —20% 14.4 42.6 IMAX3 8 1577.0 —-123%  725.0 703.0
IMAX4 8 350.9  +103%  347.3 1.6 IMAX4 8 209.7 —5.4%  205.3 2.7
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Fig. 5. Performance plot of IMAX4 and IMAX3 for
Q3_K_S model inference

Furthermore, as the number of lanes increased, the la-
tency for IMAX4 tended to increase significantly more
than that of IMAX3. Conversely, the host CPU process-
ing time for IMAX4 was reduced compared to IMAX3,
nearly eliminating the host-side computational bottle-
neck in IMAX4. With the Q8.0 model, IMAX4 achieved
substantially lower latency than IMAX3 across all lane
counts.  While IMAX3 confirmed the impact of CPU
multithreading overhead, there was no significant change
in the IMAX core processing time for IMAX4, even when
increasing lanes from one to eight. This outcome indicates
that the enhanced host system of IMAX4 effectively func-
tioned and overcame the host-side bottlenecks present in
IMAX3. Additionally, regarding the impact of varying

I Percentage changes in latency compared to 1-lane configuration
of the same device.

=
N
w

Average Time (sec)

Fig. 6. Performance plot of IMAX4 and IMAX3 for
Q8_-0 model inference

execution lane counts on IMAX4 with the Q8.0 model,
latency significantly decreased from 221.3s at 1 lane to
112.3s at 2 lanes. However, from 3 lanes onwards, la-
tency either plateaued or slightly increased. Similarly,
the IMAX core processing time also remained nearly con-
stant or showed a slight increase with additional lanes,
failing to achieve ideal linear scaling. This behavior may
be attributed to potential bottlenecks within the DMA
and PIO data transfer paths.

C. Detailed Analysis of Processing Time
in LLM Execution

In this subsection, we first analyze the data transfer
and processing times for IMAX. Fig. 5 and 6 show the
LOAD, EXEC, and DRAIN times in IMAX3 and IMAX4
by number of lanes during LLaMA3 8B quantized model
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TABLE IV
PERFORMANCE COMPARISON OF IMAX3 AND IMAX4 For CPYIN
A, CPYIN B, AND CPYOUT OPERATIONS

Configuration Operation Time [s]
Device Threads CPYIN A 2CPYINB CPYOUT
IMAX3 1 1092.9 0 1.4
IMAX4 1 174 0 0.3
IMAX3 8 350.9 0.3 1.6
IMAX4 8 3 0 0.1

inference. In IMAX3, the processing time generally de-
creases and saturates as the number of lanes increases in
both models, although it is limited by the host bottleneck.
On the other hand, the processing time of the IMAX4
was reduced up to two lanes, but the performance im-
provement tended to plateau or worsen after three lanes.
Although the host CPU bottleneck was eliminated, data
transfer inside the FPGA emerged as a new major factor.
Detailed analysis and improvement are future tasks.

To further analyze the host CPU-induced bottlenecks
in IMAX3, we measured the data copy times between
DDR memory and the DMA buffer during Q8_0 model
execution. Specifically, we measured CPYIN A for model
weight transfer, CPYIN B for input data transfer, and
CPYOUT for retrieving computation results. Table IV
shows that CPYIN A, the model weight transfer, con-
sumed the most processing time. For IMAX3, copying
CPYIN A required an exceptionally long 1092.9s for 1-
thread execution and 350.9s even with 8-threads. In con-
trast, IMAX4 reduced this time to 17.4s and 3 s, respec-
tively. This substantial improvement is a direct result of
the high processing capability of the Intel Xeon host and
the optimized data transfer pathways in IMAX4.

V. CONCLUSION

In this work, we first identified the host CPU as the bot-
tleneck for LLaMA3 on IMAX3. Next, we implemented
and evaluated an IMAX4 prototype with the host system
updated to an Intel Xeon processor. As a result of the ex-
periments, IMAX4 significantly outperformed IMAX3 in
end-to-end latency on a large model such as the LLaMA3
8B Q8.0. These results indicate that IMAX4’s architec-
tural improvements are effective in improving LLM exe-
cution performance in a server environment.

On the other hand, the effective data transfer rate to
the LMM on IMAX4 is lower than the theoretical perfor-
mance of the AXI interface and IMAX3. In future work,
we aim to establish a competitive CGRA-based acceler-
ator against GPGPUs by identifying and optimizing the
data transfer performance bottleneck.

2This value is displayed as 0 seconds for clarity, but the actual
duration is a few microseconds.
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