R2-3

SASIMI 2025 Proceedings

A Seamless Hardware/Software Switching Technique for Embedded
Systems Using HDLRuby

Lovic Gauthier

Information System Course
National Institute of Technology, Ariake College
Omuta, Fukuoka 836-8585 (JAPAN)
lovic@ga.ariake-nct.ac.jp

Abstract— This paper presents a new hard-
ware/software (HW/SW) co-design technique for
HDLRuby, a Register Transfer Level (RTL) Hardware
Description Language. This technique enables auto-
matic switching between HW and SW implementa-
tions for HDLRuby processes that describe finite state
machines. It is designed to facilitate smooth HW /SW
exploration and accelerated HW simulation. Experi-
mental results show that, with this technique, simula-
tion can be orders of magnitude faster than standard

RTL simulation.

I. INTRODUCTION

HDLRuby [1] is a Register Transfer Level (RTL) hard-
ware description language based on the Ruby program-
ming language [2]. Compared to RTL languages like
VHDL and Verilog HDL, HDLRuby provides object-
oriented programming, reflection, unconstrained gener-
icity (anything can be a generic parameter), and meta-
programming. HDLRuby descriptions can also include
Ruby code that is executed at compilation time. This SW
code can be used for analysis or HW generation. In ad-
dition to the standard processes of RTL (e.g., the always
blocks of Verilog HDL), HDLRuby also supports processes
we call sequencers that describe finite state machines us-
ing SW-like constructs.

Nowadays, even the simplest devices include both HW
and SW parts, which renders HW/SW co-design a neces-
sity. HDLRuby supports HW/SW co-simulation through
a construct, called the program, that executes C or Ruby
SW code on the edge of a signal. Yet this construct is in-
tended solely for embedding software code into RTL sim-
ulations. On the other hand, the sequencers, while similar
to SW in appearance, remain HW components.

This paper focuses on embedded systems and presents
a technique for generating SW — in Ruby or C — from
HDLRuby sequencers. The generated code can then be
executed within the HDLRuby RTL co-simulation tool to
reduce validation time or used directly as the final SW to
run on the target embedded system. Overall, this contri-
bution provides:

Sachi Yoshigai

Information System Course
National Institute of Technology, Ariake College
Omuta, Fukuoka 836-8585 (JAPAN)
s57204Q@ga.ariake-nct.ac.jp

e Functionally equivalent HW and SW code generated
from the same sequencer description.

e Easy switch at any time during the design between HW
and SW implementations.

e High-speed simulation for HDLRuby sequencers.

The rest of the paper is organized as follows: the next
section presents some related works, then the contribution
is presented in section IIT and section IV shows how to
combine sequencer and program constructs for HW/SW
smooth co-design. Then section V gives some experiments
results and section VI concludes the paper.

II. RELATED WORKS

HW/SW co-design has been an important research
topic for decades. Over the years, multiple approaches
have been and are still proposed, [7, 10]. A major ap-
proach, called High Level Synthesis (HLS) [15, 18], gained
some popularity and is now integrated into commercial
synthesis tools [11, 14]. It consists of generating HW
from SW code like C. HLS is promising, but it still can-
not compete with RTL design for HW [15, 18] and it still
lacks reliability [14, 16]. A few other approaches are us-
ing abstract languages like Matlab/Simulink or more HW-
oriented languages like SystemC [18]. Some of the most
recent works focus on using artificial intelligence for help-
ing with HLS [12, 13]. Compared to these existing works,
the approach of this paper is original in that it proposes
to generate SW from HW descriptions. Generating SW
from HW is not new, though, since approaches like [17]
can be cited. However, the objective was different: it
was to keep using legacy RTL code in a modern HW /SW
environment.

Increasing the speed of RTL simulation and co-
simulation is not new, and several approaches have been
proposed, including abstracting interfaces [6], focusing on
specific architectures [8] or generating aggressively opti-
mized simulator code [9]. The originality of the approach
proposed in this paper is that the optimization focuses on
designated parts of the HW description only.

-91 -

III. SW IMPLEMENTATION OF HDLRUBY

SEQUENCERS

From this point on, we call HW sequencer and SW se-
quencer the respective HW and SW implementations of
sequencers. The objectives of the SW sequencers are to
accelerate RTL simulation as well as easily switch between
HW and SW during the design of an HW/SW device.
Given these objectives, C may look as the natural tar-
get language for SW sequencers — and indeed, it is a
supported target. Nevertheless, in this section, the focus
is on the Ruby language. While dynamic languages like
Ruby are not considered efficient in terms of speed, mem-
ory footprint, and power consumption, several arguments
are in favor of using Ruby. First, Ruby benefits from
an embedded system-oriented implementation, mruby|3].
Second, preliminary experiments indicated that if accu-
racy is to be preserved for the SW sequencer, the perfor-
mance gap between C and Ruby is small. Third, integrat-
ing Ruby code within the HDLRuby framework is much
easier than for C.

A. About HDLRuby Sequencers

HDLRuby sequencers were introduced to facilitate the
design of finite state machines. All the usual SW con-
structs are reproduced in sequencers, but instead of exe-
cuting SW instructions, they generate RTL descriptions
of states and transitions of finite state machines. More
precisely, the sequencers can include two kinds of state-
ments: combinatorial statements and state statements.

The combinatorial statements comprise:

”

e The assignments using the arrow ” <=

e The arithmetic and logic operations.

e The combinatorial conditional statements: hif for if,
and hcase/hwhen for case/when.

operator.

In a sequencer, successive combinatorial statements are
combined into a single dataflow whose outputs are stored
in registers.

The state statements comprise:

e Explicit states: with the step keyword, which forces
the beginning of a new state. It is used for splitting
dataflows whose path is too long for a single clock cycle.

e State-based conditionals: sif for if, and scase/swhen
for case/when. A state is created for each conditional
branch.

e Loops: sfor for for, swhile for while, and sloop for
infinite loops. A state is created for the body of the
loops.

e Iterators: for applying algorithms on each element of a
range, a bit-vector, or an array.

These constructs are all similar to sequential SW, but
the generated HW remains parallel, so that no perfor-
mance is lost compared to hand-made finite state ma-
chines. The generated finite state machine runs according

1 sequencer(clk,start) do

2 count <= 0

3 sloop do

4 swhile(button) { count <= count + 1 }
5 result <= count

6 end

7 end

Fig. 1. Example of a simple sequencer

to a clock signal, which is to be provided when declaring a
sequencer. In addition, the start or restart of a sequencer
execution is controlled by an additional reset signal.

For illustration, the code in Fig. 1 describes a simple
sequencer, transitioning states on the rising edge of the
signal clk, and starting execution when the signal start
is set to one. This sequencer counts the clock cycles as
long as a button is pressed and outputs its value to result
when the button is released (in the example, all the signals
are assumed to be declared earlier in the code).

Note: As in Ruby, code blocks can be delimited either
by the { and } characters or by the do and end keywords.

While dedicated to describing finite state machines, se-
quencers can be used for describing various HW archi-
tectures. For example, a pipeline architecture can be de-
scribed by writing the assignments in a loop in reverse
order of dependency.

B. The Technique used for Implementing the SW Se-
quencers

The model of computation of HDLRuby sequencers
is compatible with software and sequencer descriptions
are, in practice, implemented as a set of Ruby methods.
Hence, it would be straightforward to replace these meth-
ods for HW descriptions with ones that interpret the se-
quencers for SW execution. For example, sif would be
interpreted as the execution of an if statement, swhile
as a while statement, and so on. In addition, since the
number of clock cycles required for each sequencer state-
ment is known by construction, the total number of clock
cycles can be counted for the SW implementation too, for
obtaining an accurate estimate of the execution time of
the corresponding HW sequencer.

This straightforward approach suffers from low perfor-
mance, though, because method calling has a high per-
formance cost in dynamic languages like Ruby. The tech-
nique proposed in this paper targets much better perfor-
mance by relying on ahead of time translation: a first step
generates high-performance Ruby code, or C code, before
a second step that will execute the resulting code.

Contrary to HW sequencers, which run in parallel with
the other components of the electronic device, SW se-
quencers’ code must be explicitly executed through a
function (or method) call. In Ruby, executing this code
is done using the call method (or the . () operator). For
example, the code of Fig. 2 describes two sequencers, one

-9

N

© w N o «

10
11
12

[7].inner :val
my_seq = sequencer do

val <= 0

swhile(val<100) { val <= val + 1 }
end

sequencer do

val <= 100

swhile(val > 0) { val <= val - 1 }
end. ()

my_seq.)

Fig. 2. Example of two SW sequencers

executed through the variable my_seq, and the other ex-
ecuted at declaration time. In the code, val is a 7-bit
unsigned signal that is decremented from 100 to 1 in the
second sequencer — executed first — and incremented up
to 99 in the first one — executed afterward — (line 12).

Details about the code generation are given in a fur-
ther subsection, after the handling of values, signals, and
synchronizations is explained.

C. Values and Signals for SW Sequencers.

The possible bit widths for values in SW languages
like C are usually limited (e.g., 32 bits), whereas in HW
any bit width can be used. However, Ruby natively uses
arbitrary-precision integers. Such integers can be used to
model any bit width using bit masking techniques. For
the sake of performance, we use them with a lazy approach
that applies bit-width constraints only when strictly nec-
essary, i.e., when performing comparisons or memory ac-
cesses — to handle cases of overflow — or when passing
values outside the sequencers. For the comparisons, the
bits exceeding the bit-width are masked out, and in case
of signed types, the sign bit is reversed to normalize with
unsigned comparisons. This processing is given by Eq. (1)
where A is the bitwise and and & is the bitwise xor, and
width is the bit-width of the value:

value N (2width _ 1) D 2width71 (1)

For memory accesses, the procedure is similar, but the
sign is not processed, and the resulting index is consid-
ered as unsigned. For passing values outside sequencers,
the same masking is used, but this time the sign is reen-
coded to match the target. For example, in Eq. (2), Ruby
language-compatible sign is enforced.

value A (29" — 1) if wvalue A (2¥" 1) =0
(value A (29" — 1)) — 29" if walue A 2V 1) £0
2
This approach limits the type-specific processing to a
minimum, taking advantage of the fact that Ruby already
handles the majority of the work by default.
Note: For generating C code instead of Ruby, we can

use an arbitrary-precision integer library like GMP [4], to
achieve to same result.

The drawback of using arbitrary-precision integers is
that bit values other than 0 or 1 (e.g., Z or X) are not
supported. If a SW sequencer is meant to be used for fast
HW simulation, it may be a limitation in some cases.

Sequencers are originally designed for HW and use sig-
nals. Yet, SW uses variables. For the sake of compati-
bility of both HW and SW sequencers, variables used in
the latter are declared exactly like the signals of the for-
mer. The behavior of these SW ”signals” is equivalent to
their HW counterpart as long as they are used within a
sequencer. For accessing them from external Ruby code,
the value method is to be used. It ensures conversion
between Ruby and Sequencer formats. For example, the
value of val can be set to 50 in Ruby code as follows:
val.value = 50.

D. Synchronization of SW Sequencers

HW sequencers, like the standard RTL processes, run
in parallel with the rest of the circuit. However, each SW
sequencer is executed to its end before the next SW code
is executed. As long as the sequencers do not interact
with others or their environment, the functional equiva-
lence between SW and HW implementations is preserved.
However, if a sequencer needs to share values with another
component at a specific time, inconsistencies between the
HW and SW implementations may occur.

One possible solution would be to synchronize the SW
sequencers with their environment at each clock cycle, but
it would defeat the purpose of achieving high performance
and purely SW-based execution. Hence, a lazy approach
is used again: no synchronization is done by default, but
the user can insert synchronization points when required.
For that purpose, a new sequencer command called sync
is provided, which can be inserted in the code of a se-
quencer. As long as there is no such command, a SW se-
quencer runs standalone like any SW function. It is only
when a sync is encountered that the underlying work for
synchronization is performed.

To that end, the SW sequencers are implemented as
fibers [5], i.e., very lightweight cooperative tasks. On
low-end mono-processors, fibers are more efficient than
threads, and in many cases, it remains better on high-end
ones too. The function of the sync command is then to
stop the execution of the current fiber, and consequently
the current sequencer. It can be resumed afterward by
calling for execution again using the call method (or the
.) operator). For example, the code given in Fig. 3
describes two sequencers communicating in a ping-pong
fashion 100 times.

In the example, stimes is an HDLRuby iterator, equiv-
alent to the times iterator of Ruby. The loop of line
20 is Ruby code that controls the execution of the se-
quencers. It checks if either sequencer has completed us-
ing the alive? method. If not, the executions of seq0
and seql are resumed. Both sequencers stop their ex-

-93 .-

© 0w N e U A W N e

[T i e
© 0 N O oA W N~ O

20

inner :ping, :pong
seq0 = sequencer do
ping <= 0
100.stimes do
ping <= 1
swhile(pong '= 1) { sync }
ping <= 0
end
end

seql = sequencer do
pong <= 0
100.stimes do
pong <= 1
swhile(ping '= 1) { sync }
pong <= 0
end
end

while(seq0.alive? or seql.alive?) { seq0.(); seql.() }

Fig. 3. Example of two synchronised SW sequencers

ecution every time they encounter the sync command,
respectively in lines 6 and 15.

If sync commands are correctly placed, the user can
achieve functional equivalence between SW and HW im-
plementations. Moreover, sync is ignored in HW se-
quencers, and conversely, the step command is ignored
in SW sequencers — except for counting the clock cy-
cles — so that both implementations can still coexist in
a single description.

E. Code Generation for the SW Sequencers

In HDLRuby, the HW sequencers are implemented as
a set of methods that generate the RTL code of state
machines. The same can be done for SW sequencers by
replacing the library of RTL code generators with Ruby
or C code generator. The resulting SW code can then
be executed for simulation or saved in a separate file for
being executed on an embedded processor. In case of
Ruby code, this code can be executed using mruby|3], for
example.

Generating Ruby code from the sequencer is straight-
forward, since all the concepts used, e.g., arbitrary-
precision integers or fibers, are natively supported by
Ruby. Generating the clock cycle count is done using a
global variable which is increased each time a state tran-
sition is expected for the corresponding HW sequencer.

However, maintaining high performance is crucial.
Nowadays languages like Ruby benefits from JIT [2] so
that the interpretation cost is low. Additionally, this lan-
guage is efficient at handling the stack and arrays. Its han-
dling of arithmetic and logic computation suffers from its
use of arbitrary-precision integers, but the SW sequencers
use them for efficient bit-level processing. However, mes-
sage passing (i.e., method or function calls), as well as
object’s variables accesses, are inherently slow because
dynamic languages like Ruby must look up their names

1 # Sequencer # Generated Ruby code
2 [32].inner :clk $__clk |[=0

3 [8].input :din __din = RubyHDL.din
4 [8].output :dout __dout ||=0

5 [8].inner :reg __reg |I=0

6 sequencer(clk) do Fiber.new do

7 100.stimes do __i =100

8 while(i>0) do

9 reg <= din __reg = __din

10 dout <= 0 __dout = 0

11 $__clk = $__clk + 1

swhile(reg !'=0) do while(__reg & 255 != 0) do
$__clk = $__clk + 1

hif(reg & 1) do if (reg&l !'= 0) do

15 dout <= dout + 1 __dout = __dout + 1
16 end end

17 reg <= reg >> 1 __reg = __reg >> 1

18 end end

19 end end

end
RubyHDL.dout =

end
__dout & 255

Fig. 4. Sequencer and the corresponding SW code

at run time. By contrast, local variables are stored on the
stack and can be accessed quickly.

Therefore, the priority when generating code is to use
as many local variables as possible and to limit method
calls to the strict minimum. In practice, all the signals
in a sequencer, as well as the loop indexes, are converted
to local variables. Regarding memories, converting them
to Ruby arrays is enough, since these data structures are
optimized. No bound check is required: Ruby returns nil
values in case of out-of-bound accesses, which is enough
for detecting an error. The handling of computations and
synchronizations has already been presented in the previ-
ous sections. Fig. 4 shows an example of a sequencer and
the resulting optimized Ruby code when the clock cycles
are counted. In the figure, din is an input signal and dout
is an output signal for the circuit. Both are transmitted
from and to the environment using the RubyHDL package
(details are skipped for the sake of brevity) as shown in
lines 3 and 21.

The same approach can be used for C code generation
and has been implemented. Two possible implementa-
tions have been considered. One, a pure C version: used
when signals are guaranteed to be smaller than 64 bits.
Experiments show this version is the fastest by at least
one order of magnitude as long as no synchronization com-
mand (sync) is used. Two, C with GMP version: GMP [4]
is a library for arbitrary-precision integer computation.

Finally, we opted for version one for two main reasons:
(1) GMP is not a standard C library, and (2) the perfor-
mance difference between Ruby and C when using GMP
is small.

Note: For the implementation of the sync command a
C fiber library like Libco is considered.

- 04 -

N

© w N o «

10
11
12
13
14
15
16
17
18

[clk,start]
program(ruby,run) do

actport start.posedge

inport din: din

outport dout: dout

code do
activate_sequencer_sw(binding)
input :din
output :dout
ar = []

ar =

my_seq = sequencer (xar) do
dout <= din
end

my_seq. ()
end
end

Fig. 5. Syntax of a program component

IV. SW SEQUENCERS FOR CO-DESIGN

The SW code generated from SW sequencers can be
used in co-simulation environments like any other SW
component. This includes HDLRuby’s co-simulation en-
vironment, which uses the program construct. This
construct can execute an external SW file, on a ris-
ing or falling edge of a signal, declared using the com-
mand actport, and supports data transfer between HW
and SW through registers declared by the inport and
outport commands. If the SW language is Ruby, the
code can be written inline in the program construct.

For easing the integration of SW sequencers with co-
simulation, a Ruby command has been added that al-
lows converting sequencers to Ruby within a HDLRuby
program construct. With this command, a SW sequencer
can be used as is, and it becomes easy to explore HW/SW
partitioning, as well as speeding up only parts of a HW
implementation: it is enough to comment in or out the
program description. Fig. 5 gives such an example. In
the figure, sequencer my_seq returns to dout the values it
receives from din. It is implemented as a SW sequencer
executed in co-simulation, but if the program part is com-
mented out, lines 2-11 and 15-17, it becomes a HW se-
quencer. Line 7 is the command that gives support to the
automatic generation and execution of SW code from the
sequencers by the co-simulation engine.

Note: The clock and start signals, respectively clk
and start required for the HW sequencer are provided
through the array args, which is overwritten in the pro-
gram code on line 10.

V. EXPERIMENTS

For the experiments, we implemented sequencers for
several benchmarks, including sample codes to individu-
ally check specific cases, as well as several applications.
We compared their simulation or execution speed in HW,
Ruby SW, and C SW implementations. The samples in-

clude checks on arithmetic operators (arith), logic op-
erations (logic), control statements (ctrl), and memory
accesses (mem). The applications include the following:
rectangular (recwav), sawtooth (sawwav), triangular (tri-
wav) and sine (sinwav) sound wave generation, gaussian
(gauss) and sobel (sobel) image filtering, greater common
divider (ged) and modular exponentiation (modexp). The
simulations have been done on an iMac 15,5 computer
with an Apple M3 8-core 4.05 GHz processor.

For the C version of the SW sequencers, the resulting C
code must be compiled separately, whereas the Ruby ver-
sion could be used seamlessly using the HDLRuby stan-
dard simulation tool. Moreover, various easy-to-use stan-
dard libraries are available in Ruby for loading or storing
images and sounds that could be used for both HDLRuby
HW and Ruby SW sequencers. Doing the same with C re-
quires additional installation and compilation steps. For
design exploration, the ease of use of the HDLRuby/Ruby
environment is an important advantage.

Table I summarizes the execution times of each bench-
mark for HDLRuby RTL simulation, Ruby SW se-
quencers, and C SW sequencers. For a better grasp of
the actual performance, we compared the performance of
the HDLRuby RTL simulator with that of Icarus Ver-
ilog in a previous publication [19], which showed that the
HDLRuby simulator was generally faster. In the table,
N/A indicate the result could not be obtained, either for
lack of memory for RTL, or non-supported bit-width for
C. While the results vary a lot depending on the kind
of computation, SW sequencers in Ruby are, in the ma-
jority of cases, more than one order of magnitude faster
than the simulation of HW sequencers. At the same time,
the SW sequencers in C are in a majority of the cases,
more than one order of magnitude faster than the ones
in Ruby. Still, SW sequencers in Ruby are fast enough
for reasonable time evaluation of the HW, e.g., a convo-
lution on a 1024x1024 image only took about 4 seconds.
Moreover, the C versions only work if the used bit width
of each signal is inferior to 64, e.g., gcd for 200 and 1024
bits were not supported by the C SW sequencers. These
performance considerations, combined with the fact that
the Ruby SW sequencers can be used inline in the co-
simulation constructs of HDLRuby makes us think that
this should be the default choice for accelerating RTL
simulation, switching to C only for very specific heavy
computation cases, like modezp (module exponentiation),
whose 32-bit version could not be simulated in a reason-
able time with Ruby.

As a preliminary estimation for selecting the computa-
tion method for C code, the arith sample has also been
implemented using the GMP library for supporting any
bit width. The execution time was 21.96s, i.e., more than
twice the Ruby version. While optimizations may be pos-
sible, the benefits of using C for full bit width support are
limited compared to using Ruby, especially if we consider
the flexibility of the latter.

-95-

TABLE 1
SIMULATION SPEED RESULTS

Algorithm / Size RTL Time Ruby Time C Time
arith / 3+ 10° ops. 124.6s 10.62s 0.81s

logic / 3% 10° ops. 65.1s 14.78s 7.79s

ctrl / 9% 10 ops. 2.70s 0.21s 0.004s

mem / 5% 10% ops. 329.6s 3.89s 0.48s
recwav / 1s sound 0.51s 0.11s 1.62 % 10~ 53s
sawwav / 1s sound 0.52s 0.11s 1.30 % 10~ 3s
triwav / 1s sound 0.49s 0.11s 1.44 % 10~ 3s
sinwav / 1s sound 0.66s 0.11s 1.06 x 10~ 3s
gauimg / 256x256 15.87s 0.33s 0.36 % 1035
sobimg / 256x256 16.16s 0.34s 0.74 % 1035
gauimg / 1Kx1K ~ N/A 4.06s 5.69 x 10~ 3s
sobimg / 1IKx1K N/A 4.15s 13.69 * 10~ 3s
ged / 32 bit 0.12s 0.06s 2.41 %10~ 7s
ged / 200 bit 0.12s 0.06s N/A

ged / 1024 bit 0.15s 0.06s N/A

mexp / 24 bit 200.60s 13.32s 0.14s

mexp / 32 bit N/A 4324.38s 190.83s

VI. CONCLUSION

This paper presented a new hardware/software
(HW/SW) co-design technique for HDLRuby, which con-
sists of generating a SW implementation of the sequencer
construct, called SW sequencer. A sequencer is a kind of
process specific to HDLRuby that allows simple design of
finite state machines. The SW sequencer can be executed
on a processor, for a HW/SW device, or used for fast
simulation, where the exact number of clock cycles can
still be measured. Two versions were developed: a Ruby-
based implementation and a C-based one. The Ruby ver-
sion supports signals of any bit-width and is well inte-
grated within the HDLRuby environment, whereas the
C version is faster, but is limited to a maximum 64-bit
signal widths. Switching between HW and SW imple-
mentation at any stage of the design is straightforward
and safe, requiring no modification of the sequencer code.
Moreover, the Ruby SW sequencers can be used inline in
the HDLRuby co-simulation environment, so that switch-
ing between HW and SW requires only minor declaration
changes in the embedding RTL.

Experimental results show that Ruby SW sequencers
are typically more than one order of magnitude faster
than RTL simulation and require little enough memory
to simulate large designs. The C implementation further
accelerates execution by often more than one additional
order of magnitude. Although the Ruby SW sequencers
are significantly slower than the C ones, they remain rea-
sonably fast, and in a majority of cases, they are enough
for simulating large devices, while benefiting from their
higher flexibility and integration.

Future works will focus on simplifying further the in-
tegration of SW sequencers in the co-simulation environ-
ment of HDLRuby, and on supporting 4-state logic in SW
sequencers simulation, only when required for functional
accuracy, without compromising performance.

ACKNOWLEDGEMENTS

This research is funded by the Japanese Grants-in-Aid
for Scientific Research (KAKENHI) No. 22K11965.

REFERENCES

[1] “HDLRuby: a Hardware Description language based on Ruby”
https://github.com/civol/HDLRuby

[2] Y. Matsumoto “The Ruby Programming Language,”
http://https://www.ruby-lang.org/

[3] “mruby, the lightweight implementation of the Ruby language,”
https://mruby.org/

[4] “The GNU Multiple Precision Arithmetic Library”
https://gmplib.org/

[5] “Fibers in Ruby”
https://docs.ruby-lang.org/en/master/Fiber.html

[6] Y. Sungjoo, A. A. Jerraya. “Hardware/software cosimulation
from interface perspective,” Computers and Digital Techniques,
vol. 152.3, pp. 369-379, 2005.

[7] D. M. Giovanni, R. K. Gupta “Hardware/Software Co-Design,”
Proceedings of the IEEE, vol. 85.3, pp. 349-365, 1997.

[8] A. Akram, L. Sawalha, “A survey of computer architecture sim-
ulation techniques and tools,” leee Access, vol. 7, pp. 78120—
78145, 2019.

[9] “Verilator, the fastest Verilog/SystemVerilog simulator.”
https://wuw.veripool.org/verilator/

[10] A. Sampson, J. Bornholt, L. Ceze, “Hardware—Software Co-
Design: Not Just a Cliché,” International Journal of Emerg-
ing Trends in Computer Science and Information Technology,
pp. 262-273, 2015.

[11] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Ca-
nis, Y.T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson,
“A survey and evaluation of FPGA high-level synthesis tools,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35.10, pp. 1591-1604, 2015.

[12] S. Dai, Y. Zhou, H. Zhang, E. Ustun, EFY. Young, Z. Zhang,
“Fast and accurate estimation of quality of results in high-level
synthesis with machine learning,” IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom Computing
Machines, pp. 129-132, 2018.

[13] Y. Liao, T. Adegbija, R. Lysecky, “Are llms any good for high-
level synthesis?,” 48rd IEEE/ACM International Conference
on Computer-Aided Design, pp. 1-8, 2015.

[14] Y. Herklotz, Z. Du, N. Ramanathan, J. Wickerson, “An empir-
ical study of the reliability of high-level synthesis tools,” I[EEE
29th Annual International Symposium on Field- Programmable
Custom Computing Machines, pp. 219-223, 2021.

[15] BC. Schafer, Z. Wang, “High-level synthesis design space ex-
ploration: Past, present, and future,” IEEE Transactions on
Computer-Aided Design of Integrated Clircuits and Systems,
vol. 39.10, pp. 2628-2639, 2019.

[16] N. Pundir, F. Farahmandi, M. Tehranipoor, “Secure high-level
synthesis: Challenges and solutions,” 22nd International Sym-
posium on Quality Electronic Design, pp. 164-171, 2021.

[17] M. L. Rashid, B. C. Schafer, “MIRROR: MaxImizing the Re-
usability of RTL thrOugh RTL to C CompileR,” Design, Au-
tomation & Test in Europe Conference, pp. 1-6, 2023.

(18] S. Lahti, P. Sjovall, J. Vanne, TD. Haméildinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38.5, pp. 898-911, 2018.

[19] “Implementation and Comparison of Several Register Transfer
Level Simulation Engines for the HDLRuby Language”
Proceedings of the 11th IIAE International Conference on In-
dustrial Application Engineering, 2023.

- 96 -

